
Tandem Processor: Grappling with Emerging Operators
in Neural Networks

Soroush Ghodrati Sean Kinzer Hanyang Xu RohanMahapatra Yoonsung Kim§

Byung Hoon Ahn Dong KaiWang‡ Lavanya Karthikeyan Amir Yazdanbakhsh♭
Jongse Park§ Nam Sung Kim‡ Hadi Esmaeilzadeh
AlternativeComputing Technologies (ACT) Lab

University of California, San Diego
§Korea Advanced Institute of Science and Technology ♭Google DeepMind ‡University of Illinois Urbana-Champaign

{soghodra, skinzer, hanyang, rohan, bhahn, lkarthik}@ucsd.edu
ayazdan@google.com {yskim, jspark}@casys.kaist.ac.kr {dwang47, nskim}@illinois.edu hadi@ucsd.edu

Abstract
With the ever increasing prevalence of neural networks and
the upheaval from the language models, it is time to rethink
neural acceleration. Up to this point, the broader research
community, including ourselves, has disproportionately fo-
cused on GEneral Matrix Multiplication (GEMM) operations.
The supporting argument was that the large majority of the
neural operations are GEMM. This argument guided the re-
search in Neural Processing Units (NPUs) for the last decade.
However, scant attention was paid to non-GEMM operations
and they are rather overlooked. As deep learning evolved and
progressed, these operations have grown in diversity and also
large variety of structural patterns have emerged that inter-
weave themwith the GEMM operations. However, conven-
tional NPU designs have taken rather simplistic approaches
by supporting these operations through either a number of
dedicated blocks or fall back to general-purpose processors.
This work sets out to challenge the conventional wisdom

in neural accelerator design and explore the architecture of an
on-chip companion, dubbed Tandem Processor, that comple-
ments the rather optimizedGEMMunit in neural accelerators.
This processor needs to be specialized to keep up with the
GEMM unit; and yet needs to be programmable to address
the (1) structural and (2) operational variations. To strike
a balance between specialization and programmability, on
the one hand, we specialize its memory access logic with a
novel ISA/microarchitecture that alleviates the register file
and its associated load/store operations. On the other hand,
the calculations of the non-GEMM layers are only supported
through primitive arithmetic/logic vector operations. There-
fore, programmability isofferedat themathematical level.The
enhancements due to the specialization of thememory access
logic in the Tandem Processor and its tight integration with
the GEMM unit sustain the throughput and the utilization
of the neural accelerator. Comprehensive evaluations of the
proposed design based on the end-to-end execution of seven
diverse DNNs including emerging language models show sig-
nificant performance improvements and energy reduction
enabled by leveraging the Tandem Processor. We provide the

RTL code that is synthesizable both for FPGA and ASIC im-
plementations in addition to the associated compiler as part
of the open-source GeneSys project (https://actlab-genesys.
github.io/).We also present the chip floorplan andpost-layout
analysis. Thiswork is the result of 10 years of effort in building
real NPUs that support end-to-end neural network execution.

1 Introduction
DeepNeuralNetworks (DNNs)have taken the IT industry and
almost every computing research community by storm. Their
compute intensity has heralded an era of neural accelerators
or neural processing units [1–50]. These designs that include
someofourownpriorwork [12, 24, 49, 51]havedisproportion-
ately focused on convolutions, then later on more broadly on
GEneralMatrixMultiplication (GEMM) operations. The ratio-
nale was thatmore than 99% of operations of neural networks
are of this type [12, 28, 30]. Researchers have focused on opti-
mizing thedesign for theseGEMMoperations fromvarious as-
pects including but not limited to sparsification [1–10, 51], bit-
level flexibility [11–17, 52], use of resistive technologies [18–
21, 53], analog computations [22–24], in/near memory com-
putation [25–28], data flow optimizations [28–39], to name
a few. These inspiring innovations have been effective in op-
timizing the runtime and energy efficiency of GEMM-based
operations. However, neural networks are not and were not just
a series of matrix multiplications. Yet, scant attention has been
paid to the non-GEMM layers and neural networks have been
treated as simply a sequence of GEMM operations even in
commonly used neural accelerator simulators [12, 49, 54].

The scale has already shifted as newmodels and deep learn-
ing algorithms have emerged. Given the rising prevalence of
neural networks and the transformative impact of language
models in generative AI applications [55–61], it is timely to
rethink neural accelerator design. As illustrated in Figure 1,
non-GEMM operations have increased significantly in num-
ber, variety, and the structure of connectivity. For instance,
VGG-16 [62], as the first generation of DNNs, includes non-
GEMM operations from only three types. Whereas the types
of non-GEMM operations have increased to ten for language
models (e.g., BERT [63],GPT-2 [64]), as the current generation

1

mailto:soghodra@ucsd.edu
mailto:skinzer@ucsd.edu
mailto:hanyang@ucsd.edu
mailto:rohan@ucsd.edu
mailto:b2ahn@ucsd.edu
mailto:lkarthik@ucsd.edu
mailto:ayazdan@google.com
mailto:yskim@casys.kaist.ac.kr
mailto:jspark@casys.kaist.ac.kr
mailto:dwang47@illinois.edu
mailto:nskim@illinois.edu
mailto:hadi@ucsd.edu
https://actlab-genesys.github.io/
https://actlab-genesys.github.io/

Conv GEMM
ReLu MaxPool

AvgPool

ResidualAdd

ClipLeakyReLu
Depth-Wise Conv

Transpose
GeLu ReduceMean

Softmax Sqrt Reciprocal

Sub Pow

Mul …

2014 <VGG>

2016 <ResNet>

2018 <Yolov3,
MobileNet-v2>

2019-Present <BERT,
GPT>

Ti
m

e

Figure 1.Neural operators in representative DNNs over the years.

of DNNs. This trend is expected to continue as DNNs enter
more domains.
The non-GEMM operations are traditionally delegated to

a few dedicated blocks (e.g., the ReLu/MaxPool units) [2, 4–
6, 11, 12, 18–20, 22, 24, 26, 29, 31, 32, 34, 35, 38–40, 42–44, 65].
However, this approach is not sustainable as the variety of
the non-GEMM operations and their structural connectivity
to other layers increase. Clearly, there is a need for a rather
significant degree of programmability. As such, alternative
to or in addition to these blocks, an off-chip general-purpose
processor [3, 7, 8, 13, 15, 16, 28, 30, 36, 37, 45–48, 66, 67] or an
on-chip one [33, 68–73] is designated to handle non-GEMM
operations. Through our evaluations,we observe that runtime
effects of the non-GEMM operations grow in dominance and
they are not a rather small and limited minority. Their runtime
effects are amplified as the GEMMunit has been polished and
optimized over the past decade. Due to these optimizations,
Amdahl’s bottleneck is shifting towards these non-GEMM
operations. Moreover, the non-GEMM counterpart needs to
keep up with this optimized GEMM unit to sustain both of
their utilization levels.

To address these emerging challenges, this paper proposes
a third alternative: a specialized, yet programmable processor,
which acts as a companion to theGEMMunit. This specialized
processor, named the TandemProcessor, not only handles the
execution of the non-GEMM layers, but also orchestrates the
end-to-end DNN execution and operand delivery between
units. To strike a balance between specialization and pro-
grammability, on one hand, we specialize its ISA andmemory
semantics and alleviate the register file and its associated
load/store operations. These specializations are derived from
the common patterns of accesses in non-GEMM layers that
rearrange and process data elements in a nested-loop fashion.
On the other hand, the calculations of the non-GEMM layers
are only supported through primitive arithmetic/logic vec-
tor operations. Therefore programmability is offered at the
mathematical level.
The design of the Tandem Processor and the following con-

tributions are the results of a decade-long endeavor to develop
real NPUs capable of executing neural networks end-to-end.
Contributions:
(1) The paper explores the uncharted and rather ignored non-

GEMM layers and their challenging structural and computa-
tional effects on the end-to-end DNN acceleration through
a comprehensive analysis and characterization.
(2)We leverage the unique characteristics of non-GEMM lay-
ers and propose a new instruction execution semantic and
architecture that doesnot adhere to the conventional Register-
File-centric designs. This design enables a unique specialized
data access semantic for the Tandem Processor.
(3) We exploit the common data manipulation patterns in
non-GEMMDNN layers and offer a pipeline front-end that
leverages microarchitectural mechanisms to keep track of
strided iterators. This innovation minimizes the overhead of
loop execution, address calculations, and memory accesses.
(4)We provide the RTL that is synthesizable on FPGA and
ASIC implementation and the associated compiler as part
of the open-source GeneSys project (https://actlab-genesys.
github.io/) and present the floorplan and post-layout analysis.

We evaluate the Tandem Processorwith respect to end-to-
end execution of seven diverse models, ranging from rather
classical DNNs to the emerging language models, when the
Tandem Processor or the alternative design points augment
the same GEMM unit. The results show that a balanced de-
sign offers significant advantages (2.7× speedup and 20.6×
energy reduction) over the common practices of using dedi-
cated blocks that may also require help from the off-chip host
processor. In an iso-resource setting, we compare the Tan-
dem Processor to Gemmini [72], a recent inspiring academic
project [72], which uses an on-chip RISC-V processor in addi-
tion to the dedicated blocks. Utilizing the Tandem Processor
outperforms the use of on-chip multi-core RISC-V proces-
sors by 5.9×. Compared to a TPU-like [33, 69] design that
augments the GEMM unit with an on-chip general-purpose
vector unit, leveraging the Tandem Processor offers 2.6× end-
to-end speedup and 1.4× energy reduction. Comparison with
NVIDIA’s Jetson Xavier NX GPU that leverages NVDLA ac-
celerator [65] shows 4.8× improvements in performance-per-
Watt with∼12× less resources. Finally, in an iso-TOPs setting,
comparison to NVIDIA A100 GPUwith TensorRT execution
shows that the proposed design matches A100 performance,
while the Tandem Processor provides 3.4× acceleration only
for non-GEMM operations.

2 ADeep Dive into Non-GEMMOperations
2.1 Characteristics of Non-GEMMOperations

Non-GEMMoperations are significantly diverse. Table 1
summarizes the non-GEMM operators used for inference
across a set of diverse DNNmodels. We extract these opera-
tions from their corresponding ONNX implementations [78].
These layers can be categorized into five classes: (1) element-
wise mathematical operations, (2) element-wise activation
functions, (3) reduction-based operations, (4) data layout
transformation operations, and (5) data type conversion op-
erations. Non-GEMM operators fundamentally differ from

2

https://actlab-genesys.github.io/
https://actlab-genesys.github.io/

Table 1.Non-GEMM operators and their representative DNNs.

Non-GEMMOperator Classes Operator Examples Representative DNNs

Element-wise mathematical operators Add, Sub, Mul, Exp, Sqrt, Floor, Ceil, Greater,
Equal, Less, Pow, Reciprocal ResNet [74], Yolov3 [75], MobileNetv2 [76], EfficientNet [77], BERT [63], GPT-2 [64]

Element-wise activation function Relu, LeakyRelu, Clip, Tanh, Sigmoid, GeLU VGG-16 [62], ResNet [74], Yolov3 [75], MobileNetv2 [76], EfficientNet [77], BERT [63], GPT-2 [64]

Reduction-based operators Depth-wise Conv, MaxPool, GlobalAveragePool,
ReduceMean, Softmax VGG-16 [62], ResNet [74], MobileNetv2 [76], EfficientNet [77], BERT [63], GPT-2 [64]

Data layout transformation Transpose, Reshape, Concat Yolov3 [75], BERT [63], GPT-2 [64]
Type conversion Cast, BitShift Any Inference

Table 1

GEMM Element-wise
Activation Function

Element-wise
Mathematical
Operators

Reduction-based
Operators

Data Layout
Transformation

Datatype Cast DNNs cumsum_gemm cumsum_act cumsum_mat cumsum_red cumsum_lay cumsum_cas

16 15 0 6 0 16 VGG-16 16 15 0 6 0 16

54 49 16 2 0 60 ResNet-50 70 64 16 8 0 76

36 35 10 18 2 46 MobileNet-v2 106 99 26 26 2 122

75 72 30 0 0 105 YoloV3 181 171 56 26 2 227

62 61 23 31 0 85 EfficientNet 243 232 79 57 2 312

98 13 484 62 117 191 BERT 341 245 563 119 119 503

73 12 296 62 231 141 GPT-2 414 257 859 181 350 644

C
um

ul
at

iv
e

N
um

be
r o

f O
pe

ra
tio

ns

0

150

300

450

600

VGG-16
+ ResNet-50
+ MobileNet-v2
+ YoloV3
+ EfficientNet
+ BERT

GEMM
Element-wise Activation
Element-wise Mathematical
Reduction
Data Layout Transformation
Datatype Cast

16 15 6 16

70 64
16 8

76

10
6

99
26 26

2
12

2

18
1

17
1

56
26

2

22
7 24

3
23

2
79

57
2

31
2 34

1
24

5
56

3

11
9

11
9

50
3

C
um

ul
at

iv
e

N
um

be
r o

f
O

pe
ra

tio
ns

0

150

300

450

600

VGG-16

+ ResNet-50

+ MobileNet-v2

+ YoloV3

+ EfficientNet

+ BERT

GEMM
Element-wise Activation
Element-wise Mathematical
Reduction
Data Layout Transformation
Datatype Cast

16 15 6 16

70 64
16 8

76

10
6

99
26 26 2

12
2 18

1
17

1

56
26 2

22
7 24

3
23

2
79 57

2
31

2 34
1

24
5

56
3

11
9

11
9

50
3

C
um

ul
at

iv
e

N
um

be
r o

f O
pe

ra
tio

ns

0

225

450

675

900

VGG-16

+ ResNet-50
+ MobileNet-v2

+ YoloV3

+ EfficientNet

+ BERT

+ GPT-2

GEMM
Element-wise Activation
Element-wise Mathematical
Reduction
Data Layout Transformation
Datatype Cast

16 15 6 16

70 64
16 8

76

10
6

99
26 26 2

12
2 18

1
17

1

56 26
22

7

24
3

23
2

79 57
2

31
2

34
1

24
5

56
3

11
9

11
9

50
3

41
4

25
7

85
9

18
1

35
0

64
4

Figure 2. Cumulative number of GEMM and non-GEMM operations across
benchmarks. Last bar covers the frequency of usage across all the models.

GEMM ones. They exhibit a wide diversity in terms of com-
puteoperations ranging fromsimplemathematicaloperations
(e.g.Add,Mul, etc.) to complexones (e.g.GeLU,Exp, etc.) as op-
posed to the commonly used multiply-accumulate in GEMM
layers.Moreover, they require various patterns ofmappingbe-
tween input and output tensors, from one-to-one in element-
wise operations to many-to-one in reduction-based ones.
Usage frequency of non-GEMMoperations is continu-
ously growing. Figure 2 shows the usage frequency of the
GEMM and non-GEMM operators across the studied bench-
marks. We extract this data from the ONNX graph represen-
tation of each model and categorize themwith respect to the
classification in Table 1. The y-axis shows the cumulative
usage of these operators as additional models are taken into
account1. The last group of bars show the total cumulative us-
age of operators across all benchmarks. As shown in Figure 2,
as additional models are covered, the cumulative number of
non-GEMM operations noticeably surges. Additionally, tak-
ing the entire benchmarks into account (last bar), merely 15%
of total DNN operator nodes are GEMMs.
Non-GEMMoperationsimposenon-trivialruntimeover-
heads in newer DNNs. Figure 3 shows the runtime break-
down of benchmark DNNs for three design choices: (1) a
GEMM unit with an off-chip CPU (Baseline (1) in Figure 3),
(2) a GEMM unit coupled with a set of dedicated units and
the same off-chip CPU (Baseline (2) in Figure 3), and NVIDIA
A100 GPU that leverages tensor cores and INT8 execution
mode. Section 7 describes the experimental methodology to
obtain these results. Figure 3 reports the runtime breakdown
1The models are listed in chronological order.

Energy Breakdown
Pla$orm GEMM

Layers
Non-

GEMM
Layers

CPU-
NPU

Comm
VGG-16 CPU 0.440 0.042 0.519
VGG-16 dedicated 0.987 0.002 0.011
VGG-16 GPU 0.79 0.21 0.79
ResNet-50 CPU 0.166 0.212 0.622
ResNet-50 dedicated 0.388 0.603 0.009
ResNet-50 GPU 0.78 0.22 0
MobileNet
v2

CPU
0.037 0.689 0.275

MobileNet
v2

dedicated
0.040 0.721 0.239

MobileNet
v2

GPU
0.57 0.43 0

Yolov3 CPU 0.281 0.268 0.451
Yolov3 dedicated 0.281 0.268 0.451
Yolov3 GPU 0.78 0.22 0
EfficientNe
t

CPU
0.027 0.763 0.210

EfficientNe
t

dedicated
0.028 0.806 0.166

EfficientNe
t

GPU
0.56 0.44 0

BERT CPU 0.152 0.525 0.323
BERT dedicated 0.180 0.524 0.296
BERT GPU 0.29 0.71 0

GPT-2 CPU 0.180 0.379 0.441

GPT-2 dedicated 0.195 0.326 0.479

GPT-2 GPU 0.36 0.64 0

0%

25%

50%

75%

100%

GEMM Time Non-GEMM Time PCIe

ResNet-50 MobileNet-

v2

Efficient-

Net

YoloV3 BERT

Energy Breakdown-1
Pla$orm GEMM

Ops
Non-

GEMM
Ops

sum

ResNet-50 Ops 0.996 0.004 1

MobileNet
v2

Ops
0.912 0.088

EfficientNe
t

Ops
0.918 0.082

Yolov3 Ops 0.998 0.002

BERT Ops

Average Ops 0.956 0.044

0%

25%

50%

75%

100%
GEMM Ops
Non-GEMM Ops

ResNet-50

MobileNet-v2

EfficientNet

YOLOv3

BERT
Average

(b)

(a)

VGG-16

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

A1
00

 G
PU

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

GPT-2

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

Towards Newer Neural Models

A1
00

 G
PU

A1
00

 G
PU

A1
00

 G
PU

A1
00

 G
PU

A1
00

 G
PU

A1
00

 G
PU

Figure 3.Runtime breakdownof benchmarkDNNs across various platforms.

Conv

ReLU

ReLU

Conv

ReLU

Conv

Add

ReLU

(a) ResNet-50

Conv

Add

Clip

Clip

Conv

Add

(b) MobileNetv2

DW-Conv

GEMM

Mul

Add

So6max

GEMM

GEMM

Add

Transpose

…

Transpose

GEMM

(c) BERT

Figure 4. Repeated subgraphs of (a) ResNet-50 [74], (b)MobileNetv2 [76],
and BERT [63]. The gray ovels illustrate the non-GEMM operations and
white rectangles show the GEMM-based operations.

across the time spent on GEMM layers, non-GEMM layers,
and PCIe communications (for the case of Baselines (1) and
(2)). As the non-GEMM layers become more diverse and com-
plex in newer models such as EfficientNet, BERT, andGPT-2
they also become themain source of the execution bottleneck.
For instance, the execution of non-GEMM layers take up 81%
and 73% of the runtime for EfficientNet in Baseline (2) and
GPU, respectively.
Non-GEMMoperationsareinterspersedamongstGEMM
operations. Figure 4 depicts the core and frequently used
subgraphs of three representative DNNs. As shown, the non-
GEMM operators are interspersed amongst the GEMM ones
(e.g. Conv) with various forms of connectivity. This structure
demands back-and-forth data exchange between GEMM and
non-GEMMunits throughoff-chiporon-chipmemory.On top
of this data exchange, tensor reformatting such as datatype

3

10−1 100

Operational Intensity (Ops/Byte)

101

6 × 100

2 × 101

3 × 101

Pe
rfo

rm
an

ce
 (G

Op
s/

Se
c)

ResAdd
GELU
LeakyReLU
Transpose
Depthwise Conv
ReduceMean
MaxPool
Clip
Softmax
ReLU
Pow

Figure 5. Roofline model for a number of prevalent non-GEMM operators.

casting and tensor layout transformations may be required.
For instance theGEMMunitmayoperatewith INT-8/16mode,
while the non-GEMM unit operates in FP32 mode.
The majority of non-GEMM operations are memory-
bound. The majority of non-GEMM layers are element-wise
operations (>80%). Moreover, the ones that are not element-
wise exhibit low computational intensity and data reuse. Fig-
ure 5 shows a roofline [79]2 analysis for a set of prevalent non-
GEMM operators. As shown, most of the analyzed operators
(other thanSoftmax andGeLU) fallwithin thememory-bound
region of the roofline. This is in contrast toConv/GEMMoper-
ations that aregenerally compute-bound[80].Thisdistinction
necessitates architecture design considerations.

2.2 Requirements
for Executing Non-GEMMOperations

Inspired by the above characteristics, below we list three key
requirements to efficiently execute non-GEMM operations.
R1: In-tandem execution of GEMM and non-GEMMop-
erations. To reduce the data exchange among consecutive
layers (GEMM and/or non-GEMMs) through off-chip mem-
ory, prior work suggests layer fusion [81–84]. Layer fusion
preserves the intermediate activation values stationary on
the chip for subsequent DNN operations. To leverage this
technique, the intermediate activations ought to be commu-
nicated between GEMM and non-GEMM units via on-chip
memory subsystem for a sequence of fused layers. However,
this data communication at the granularity of entire layer out-
puts is neither trivial nor efficient, due to the limited on-chip
memory of the accelerators and reduced utilization of GEMM
and non-GEMM units (Figure 8 shows the impact on utiliza-
tion). In essence, the data transfer ought to be performed at
a finer granularity of a chunk of output tensor, a.k.a tile. This
fine granularity of coordination requires the non-GEMMunit to
seamlesslywork in tandemwith theGEMMunit,while retaining
minimal data transfer and reformatting overhead.
R2: Balanced efficiency and programmability for the
non-GEMM unit. The diversity of the non-GEMM opera-
tors calls for a degree of programmability in the hardware.
2We performed the experiments on the Tandem Processorwith the configu-
ration shown in Table 3 of Section 7.

Table 2. Comparison of prior approaches for supporting non-GEMM opera-
tors with this work. † indicates that these aspects are supported partially.

Design classes Working in tandem
with GEMMUnit Specialization Programmability Execution

Control

Offchip CPU fallback % % " "
Dedicated on-chip
hardware units " " % %

Onchip RISC-V core
(+ dedicated units) %† %† " "

General purpose
vector unit " %† " %

This work (Tandem Processor) " " " "

Nonetheless, this should not emerge at the cost of noticeable
efficiency reductions. This is important because the ineffi-
ciency of the non-GEMM unit can potentially make it the
performance bottleneck and result in stalling the GEMMunit.
Therefore, striking a balance between programmability and
specialization is crucial.
R3: Orchestrating the execution across non-GEMMand
GEMMunits.Having both GEMM and non-GEMM acceler-
ation units in one coherent system requires adequate support
for execution orchestration. In particular, (1) DNNnodes need
to be effectively dispatched to their pertinent processingunits,
(2) GEMM and non-GEMM units need to diligently synchro-
nize and handshake together at the right time to realize in
tandem execution and back-and-forth interactions.

2.3 Existing
Approaches for Executing Non-GEMMLayers

Table 2 compares priormethodswith respect to the aforemen-
tioned requirements. Below, we discuss them in details.
Class (1): Off-chip CPU fallback. This approach presumed
by a large number of prior work [3, 7, 8, 13, 15, 16, 28, 30,
36, 37, 45–48, 66, 67] provides ultimate programmability and
handles the end-to-end execution orchestration. However,
it impedes the performance due to the lack of specialized
execution and in tandem execution with the GEMM unit,
which the latter is caused by the nontrivial back-and-forth
data transfer between theGEMMunit andCPU over PCIe and
required data conversions (e.g. integer to float and vice versa).
Class (2): Dedicated on-chip hardware units.An alterna-
tive strategy [2, 4–6, 11, 12, 18–20, 22, 24, 26, 29, 31, 32, 34, 35,
38–40, 42–44, 65] is to equip the GEMMunit with a set of ded-
icated units customized for specific non-GEMM operations.
These dedicated units can often be tightly integrated with the
GEMM unit (work in tandem), but do not offer execution or-
chestration.Another drawback is, it is not scalable to augment
neural accelerators with dedicated units for each single type
of non-GEMM operation. This also prohibits the accelerator
to support emerging non-GEMM operations as a result of
evolving DNNs. In the case of unsupported operations these
acceleratorsmust still fall back to an off-chip CPU.
Class (3): On-chip RISC-V core. The on-chip core in these
designs [72, 73] executes the non-GEMM operators and con-
trols on-chip resources. Gemmini [72] extends theRISC-V ISA

4

with a set of dedicated units/instructions for a limited set of
non-GEMM layers. Although this approach obviates off-chip
CPU communication, but still the overheads of datatype cast-
ing and layout conversion remain, blocking in tandem execu-
tion.More importantly, the on-chip core that has a singleALU
lacks in terms of compute power and efficiency to process the
non-GEMM layers and can become the execution bottleneck.
Class (4): On-chip general-purpose vector unit.Nvidia
Streaming Multiprocessor (SM) units [68] that consist of ten-
sor cores (GEMM units) and CUDA cores (general-purpose
vector units) belong to this design class. Another notable
example is the Vector Processing Unit (VPU) in Google’s
TPU [33, 69, 85] and other industrial designs [35, 70, 71].
Vectorized execution leverages the inherent parallelism in
non-GEMM layers for increased performance improvement.
Additionally, these vector units often work in tandemwith
the GEMM units. However, these units do not handle the exe-
cution control [33, 68] and fall short in terms of specialization.
Other related industry designs include SiFive x280 [86] and
Meta MTIA v1 [87]. SiFive x260 is a multi-core vector proces-
sor with RISC-V vector extensions for deep learning work-
loads. The design does not include a GEMMunit but provides
a set of communication protocols that can be leveraged to
integrate this multi-core vector processor with a GEMM unit.
Another design point is Meta’s MTIA v1. This design com-
prises a grid of Processing Elements (PEs). Each PE comprises
a GEMM unit and three other units to support non-GMEM
operations: (1) a SIMD array of dedicated units to support
activation functions and typecast operations, (2) a general-
purpose corewithRISC-Vvector extensions toprovide further
programmability for more complex non-GEMM operations,
and (3) a memory layout unit that support transpose/reshape
types of operations. In a sense, this design follows both Class
(2) and Class (4) of accelerators and includes both dedicated
units and general-purpose vector cores.

2.4 Our Approach
In this paper we offer the Tandem Processor as a specialized
companion SIMD processor that operates in tandemwith the
GEMM unit, while striking a balance between customization
and programmability. The proposed processor orchestrates
the end-to-end execution, eliminating the need for an addi-
tional companion CPU.

3 Design
Considerations for the Tandem Processor

3.1 Memory SubsystemDesign
The lowcomputational intensityandthesizable tensoroperands
for non-GEMM operators prompt the memory subsystem to
repeatedly stream data fromoff-chipmemory. Thus, a locality-
oriented hierarchicalmemory sub-system (i.e., vector register

file and cache(s)) and conventional load/store data commu-
nication, necessitate an excessive number of memory instruc-
tions to deliver off-chip data to/from vector register files, fun-
neling through thememory hierarchy. To address this, we use
the following insight: Non-GEMM layers most often operate
on statically-structured tensor operands with a-priori known
dimensions in a streaming fashion. The Tandem Processor re-
places the entire vector register file and cache hierarchy with a
collection of single-level software-managedon-chip scratchpads.
This design innovation is in contrast to all prior SIMDdesigns
that rely on register file execution andmemory semantics (e.g.
Google’s VPU [85]). As shown in Figure 6a, these load/store
operations to vector register files on average impose 41% and
27% runtime overhead for non-GEMM operations and end-
to-end execution, respectively. To manage data movements
between off-chip/on-chipmemories, we design aData Access
Engine. This unit can be configured and invoked by few ex-
plicit load/store instructions per tile to fetch entire tensors.
Such data movement merely appears at the boundary of a tile,
blocking any further intervention from the off-chip memory.

3.2 Specialized On-Chip Data AccessMechanism
Using large on-chip scratchpads submits a new challenge as
fitting the scratchpad addresses in an Instruction Word as
opposed to IDs of registers would require significant increase
in instruction length. In addition, on-chip address calcula-
tions require excessive number of arithmetic instructions. For
instance, per two-operand arithmetic/logic instruction, three
extra instructions would be required solely for address cal-
culation. As Figure 6b shows, this address calculation would
impose runtime overheads: On average, 59% of the runtime
for non-GEMM layers and 40% of end-to-end DNN runtime.
To tackle this challenge,we devise a dedicated pipeline stage
for address calculation at the front-end, relieving the burden
of address calculation from compute units.

Weregulatewalkingovereachdimensionof tensoroperands
by a tuple of ⟨Offset, Stride⟩. Hence, if these tuples can be em-
bedded in a single instruction alongwith compute operations,
upon being inferred at the decode stage, the scratchpad ad-
dresses can be calculated in parallel with compute operations.
Yet, providing three such tuples for a non-GEMM layer would
still require significant increase in instruction length. Instead,
we forge scratchpad accesses through indirect strided address
calculations. Figure 7 illustrates this feature. We formulate
these strided accesses using ⟨Scratchpad ID, Iterator Index⟩
format. The Scratchpad ID is used to select the corresponding
scratchpad iterator table and the Iterator Index points to an
entry in the Iterator Table. Each entry in the Iterator Table
stores a tuple of ⟨Offset, Stride⟩ for each operand. This de-
sign optimization realizes the embedding of strided addresses
and compute operations into a single 32-bit instruction word
(See Section 5). With this mechanism the Tandem Processor
supports address calculation as well as compute operation
on the same pipeline path with shared control and no extra

5

Energy Breakdown
Pla$orm Rest ld/st

Non-
GEMM

VGG-16
0.47474037030.5252596297

E2E VGG-16 0.969533776150.03046622385
Non-
GEMM

ResNet-50
0.70170421720.2982957828

E2E ResNet-50 0.86514511820.1348548818
Non-
GEMM

MoileNet
0.58221121840.4177887816

E2E MoileNet 0.61216297450.3878370255
Non-
GEMM

EfficientNet
0.62306515030.3769348497

E2E EfficientNet 0.6375699620.362430038
Non-
GEMM

Yolov3
0.75766656360.2423334364

E2E Yolov3 0.97499581920.0250041808
Non-
GEMM

BERT
0.69404095480.3059590452

E2E BERT 0.7197485460.280251454
Non-
GEMM

GPT-2
0.28423279840.7157672016

E2E GPT-2 0.34675571460.6532442854
Non-
GEMM

Avg
0.5882373247142860.411762675285714

E2E Avg 0.7322731300928570.267726869907143

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

Bi
H

iw
e

Bi
H

iw
e

MemN2N

Bi
H

iw
e

BERT-B-G BERT-L-S

Bi
H

iw
e

Bi
H

iw
e

Bi
H

iw
e

R
un

tim
e

B
re

ak
do

w
n

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

1.
3x

1.
3x

BERT-B-S BERT-L-G

Baseline

LeOPArd -P

LeOPArd

ALBERT GPT-2-L

ResNet-50

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

Ba
se

lin
e

(1
)

0%
20%
40%
60%
80%

100%

Non-GEMM VGG-16 E2E VGG-16 Non-GEMM ResNet-50 E2E ResNet-50 Non-GEMM MoileNet E2E MoileNet Non-GEMM EfficientNet E2E EfficientNet

Main Execution LD/ST Overhead

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

MobileNet-v2

EfficientNet

Yolov3

BERT
VGG-16

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
-G

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

Average

E2
E

N
-G

E2
E

N
-G E2
E

N
-G

E2
E

N
-G

E2
E

N
-G

E2
E

N
-G

E2
E

GPT-2

(a) LD/ST to/from register files.

Energy Breakdown
Pla$orm Rest Addr

Calc
Non-
GEMM

VGG-16
0.36 0.64

E2E VGG-16 0.97 0.03
Non-
GEMM

ResNet-50
0.49 0.51

E2E ResNet-50 0.72 0.28
Non-
GEMM

MoileNet
0.35 0.65

E2E MoileNet 0.37 0.63
Non-
GEMM

EfficientNet
0.36 0.64

E2E EfficientNet 0.36 0.64
Non-
GEMM

Yolov3
0.50 0.50

E2E Yolov3 0.90 0.10
Non-
GEMM

BERT
0.47 0.53

E2E BERT 0.50 0.50
Non-
GEMM

GPT-2
0.34 0.66

E2E GPT-2 0.41 0.59
Non-
GEMM

Average
0.41 0.59

E2E Average 0.6042857142857140.395714285714286
TE

TR
IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

Bi
H

iw
e

Bi
H

iw
e

MemN2N

Bi
H

iw
e

BERT-B-G BERT-L-S

Bi
H

iw
e

Bi
H

iw
e

Bi
H

iw
e

R
un

tim
e

B
re

ak
do

w
n

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

1.
3x

1.
3x

BERT-B-S BERT-L-G

Baseline

LeOPArd -P

LeOPArd

ALBERT GPT-2-L

ResNet-50

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

Ba
se

lin
e

(1
)

0%
20%
40%
60%
80%

100%

Non-GEMM VGG-16 E2E VGG-16 Non-GEMM ResNet-50 E2E ResNet-50 Non-GEMM MoileNet E2E MoileNet Non-GEMM EfficientNet E2E EfficientNet

Main Execution Addr. Calc. Overhead

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

MobileNet-v2

EfficientNet

Yolov3

BERT
VGG-16

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
-G

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N
PU

-
Ta

nd
em

Average

E2
E

N
-G

E2
E

N
-G E2
E

N
-G

E2
E

N
-G

E2
E

N
-G

E2
E

N
-G

E2
E

GPT-2

(b)Address calculation.

Energy Breakdown
Pla$orm Rest Loop

Non-
GEMM

VGG-16
0.24 0.76

E2E VGG-16 0.86 0.14
Non-
GEMM

ResNet-50
0.40 0.60

E2E ResNet-50 0.63 0.37

Non-
GEMM

MoileNet
0.23 0.77

E2E MoileNet 0.25 0.75
Non-
GEMM

EfficientNet
0.24 0.76

E2E EfficientNet 0.25 0.75
Non-
GEMM

Yolov3
0.41 0.59

E2E Yolov3 0.83 0.17
Non-
GEMM

BERT
0.30 0.70

E2E BERT 0.34 0.66
Non-
GEMM

GPT-2
0.3033333333333330.696666666666667

E2E GPT-2 0.5266666666666670.473333333333333
Non-
GEMM

Average
0.3033333333333330.696666666666666

E2E Average 0.5266666666666670.473333333333333

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

Bi
H

iw
e

Bi
H

iw
e

MemN2N

Bi
H

iw
e

BERT-B-G BERT-L-S

Bi
H

iw
e

Bi
H

iw
e

Bi
H

iw
e

R
un

tim
e

B
re

ak
do

w
n

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

1.
3x

1.
3x

BERT-B-S BERT-L-G

Baseline

LeOPArd -P

LeOPArd

ALBERT GPT-2-L

ResNet-50

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

Ba
se

lin
e

(1
)

0%
20%
40%
60%
80%

100%

Non-GEMM VGG-16 E2E VGG-16 Non-GEMM ResNet-50 E2E ResNet-50 Non-GEMM MoileNet E2E MoileNet Non-GEMM EfficientNet E2E EfficientNet

Main Execution Loop Overhead

Ba
se

lin
e

(2
)

NP
U-

Ta
nd

em

MobileNet-v2

EfficientNet

Yolov3
BERT

VGG-16

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

N-
G

Ba
se

lin
e

(1
)

Ba
se

lin
e

(2
)

NP
U-

Ta
nd

em
Ba

se
lin

e
(1

)

Ba
se

lin
e

(2
)

NP
U-

Ta
nd

em
Ba

se
lin

e
(1

)

Ba
se

lin
e

(2
)

NP
U-

Ta
nd

em
Ba

se
lin

e
(1

)

Ba
se

lin
e

(2
)

NP
U-

Ta
nd

em

Average

E2
E

N-
G

E2
E

N-
G

E2
E

N-
G

E2
E

N-
G

E2
E

N-
G

E2
E

N-
G

E2
E

GPT-2

(c) Loop execution.

Figure 6.Analyzing the overheads of non-GEMM execution eliminated by design considerations in the Tandem Processor, individually. "N-G" and "E2E" denote
the runtime for Non-GEMM and End-to-End execution. These experiments are performed on the Tandem Processor + GEMM unit with Table 3 configurations
with all hardware specializations and compiler optimizations, except the ones under evaluations.

<Offset, Stride>

<Offset, Stride>

…
…

Scratchpad-0 Table

<Scratchpad ID,
Iterator Index>

<Offset, Stride>

<Offset, Stride>

…

Offset

+
Scratchpad
address to
read/write
operand

Iterator Tables

Scratchpad-k Table
Stride

Sc
ra

tc
hp

ad

ID
Ite

ra
to

r
In

de
x

Ite
ra

to
r

In
de

x

Figure 7. Indirect strided address calculation for scratchpad accesses.

runtime overhead. This is in contrast to prior work [88–90]
which leverage decoupled access/execute engines with reg-
ister files/FIFOs for data access and address generation.

3.3 Specialized Loop Execution
Non-GEMM layers are formed of nested loops of primitive
operationswith pre-determined iteration counts. As Figure 6c
shows, using conventional loop logic (i.e. conditional branch)
incurs on average 70% and 47% runtime overhead for non-
GEMM layers and end-to-end DNN execution, respectively.
To alleviate this, we devise specialized loop execution seman-
tics, while removing the branch prediction logic.

To that end, the Tandem Processor uses software-managed
tables in the fetch pipeline stage to orchestrate the execution
of nested loop constructs in hardware. Prior to execution,
these tables are configured oncewith the iteration counts and
corresponding number of nested loop levels. Once configured,
these specialized tables are used repeatedly in conjunction
with the iterator tables toexecute the loopbody.This is crucial,
since appropriate ⟨Offset, Stride⟩ tuples need to be employed
at each level of loop nest to correctly calculate the scratchpad
addresses. This specialized loop execution is unique to the
TandemProcessor, as priorwork [90, 91] leveraged hardware-
managed loop logic with register-file based designs and did
not offer mechanisms to combine it with address calculation.

3.4 Arithmetic Logic Units Design

ALU operations. To support a diverse set of non-GEMM
layers, one approachwould be to use dedicated specialized in-
struction for each layer. However, this would lead to a design
similar to the second class in Section 2.3. We instead leverage
the feasibility of implementing complex non-GEMM layers
with a set of simple primitive operations [92, 93]. For instance,
GeLUoperator can be implemented usingfivemultiplications,
threeadditions, a sign, anabsolute, andaminimumoperations.
We consider a union set of these primitives that is comprehen-
sive enough to support non-GEMM layers shown in Table 1.
Hence, the TandemProcessor offers better hardware resource
utilization and reuse across a larger set of operations.
ALUprecisionanddatatype.Priorworks showthat integer-
onlyarithmeticcanbeused for inferenceexecutionofCNNs[94,
95] and transformers [92] with virtually no repercussions
on accuracy. In addition, while GEMM layers and few non-
GEMM layers such as Relu are amenable for low-precision
INT8 implementation [94], some non-GEMM layers such as
ResAdd and Softmax require INT32 precision [92, 95]. To pro-
vide sufficient precision for all non-GEMM operators, we use
INT32 for the Tandem ProcessorALUs. As a complementary
benefit, additional data casting from GEMM to non-GEMM
unit is notneeded, sinceGEMMunits typically accumulate the
partial results in INT32 precision [12, 28, 30, 33, 69, 92]. How-
ever, since GEMM layers may use lower precision, a datatype
casting instruction is required when activations move from
non-GEMM to GEMM unit.

3.5 Integration with the GEMMUnit

Coordination granularity.We use tile (sub-tensor) gran-
ularity for software pipelining to facilitate execution overlap
between GEMM and non-GEMM units, improve resource uti-
lization, and better conform with limited on-chip memory
capacity. As Figure 8 shows, the in tandem coordination of
the GEMM unit and the Tandem Processor at tile granularity
increases the compute resource utilization by 20% and 13%
for the GEMM unit and the Tandem Processor, respectively.

6

Improvement over Gemmini-1rckt
sys-unpipe sys-pipe simd-

unpipe
simd-pipe

VGG-16 0.78 0.95 0.04 0.12
ResNet-50 0.70 0.94 0.06 0.14

MobileNet-v2 0.33 0.54 0.20 0.50
EfficientNet 0.22 0.68 0.23 0.47

Yolov3-DarkNet 0.78 0.97 0.05 0.15
BERT 0.17 0.21 0.83 0.88

GPT-2 0.22 0.25184399 0.7 0.74815601
Average 0.4571428571428570.6488348557142860.3014285714285720.429736572857143

U
til

iza
tio

n

0.0%

25.0%

50.0%

75.0%

100.0%

VGG-16
ResNet-50
MobileNet-v2
EfficientNet
Yolov3

BERT

GPT-2

Average

0.43

0.748

0.88

0.15

0.47

0.5

0.14

0.12

0.301

0.7

0.83

0.05

0.23

0.2

0.06

0.04

0.649

0.252

0.21

0.97

0.68

0.54

0.94
0.95

0.5

0.2

0.2

0.8

0.2

0.3

0.7

0.8

GEMM Unit - No Overlap GEMM Unit - Overlap w/ Tile Gran.
Tandem Processor - No Overlap Tandem Processor - Overlap w/ Tile Gran.

45
% 65

%
43

%
30

%

Figure 8. Resource utilization analysis.

Note that an operand-level granularity is less efficient. This
is because some non-GEMM operators, such as depthwise
convolution, require arbitrary accesses to GEMM outputs for
consecutiveoperations.This accesspattern results in frequent
stalls, curtailing the overall performance.
Communication mechanism. To enable tile-based coor-
dination, one probable approach is to directly move/copy
tiled data from the GEMM unit’s Output BUF to the Tan-
dem Processor’s private scratchpads. However, this design
decision incurs communication overhead at the boundary
of each accelerator units, requiring complex coordination
mechanism. Alternatively, we enable a fluid ownership of the
GEMM unit’sOutput BUF for the Tandem Processor, obvi-
ating redundant data communications. After the GEMM unit
completes storing the intermediate data in theOutput BUF,
the Tandem Processor takes the ownership of the buffer and
directly executes its computations on the stored data.
Synchronizationmechanism. To enable this fluid owner-
ship while simplifying hardware, we leverage the compiler
to weave a set of synchronization instructions (See Section 5)
betweenGEMMandnon-GEMMinstructions. These synchro-
nization instructions realize the following: (1) They identify
the code regions for GEMM unit and the Tandem Processor,
facilitating the instruction dispatch. (2) They define the flow
of execution between GEMM and non-GEMM units. (3) They
govern the handshaking mechanism between the accelera-
tion units. For instance, enforcing the release of ownership
of theOutput BUF after the Tandem Processor completes the
execution.

4 Microarchitecture
Design for the Tandem Processor

4.1 Pipeline Design
In this section, we discuss the major aspects of the Tandem
Processor’s pipeline microarchitecture, illustrated in Figure 9.
On-chipmemory organization.We refer to the Tandem
Processor scratchpads asNamespaces, which are shownwith
gray colour in Figure 9. Interim BUF 1&2 namespaces repre-
sent the central Tandem Processor’s on-chip scratchpads that
operate as a storage medium for tensor operands as well as
their intermediate results. These scratchpads, which bridge

Tandem
Instr.	
Fetch

Iterator
Tables

+
+
+

Fe
tc
h

D
ec
od

e/
<s
tr
id
e,
off

se
t>

Re
ad

St
ri
de

d	
A
dd

re
ss

Ca
lc
ul
a:

on

Sc
rt
ac
hp

ad
	

Re
ad

Sc
ra
tc
hp

ad
	R
ea
d/

Ex
ec
u:

on

Code	
Repeater

IMM	
BUF

Data	
Acces	
Engine

Sc
ra
tc
hp

ad
	R
ea
d/

W
ri
te
	B
ac
k/

Ex
ec
u:

on
	

Interim	
BUF	1&2

Bank1

Interim	
BUF	1&2

Bank2

Interim	
BUF	1&2

Bank3

Interim	
BUF	1&2

BankN

Write	Back

Sc
ra
tc
hp

ad
	W

ri
te
	B
ac
k

Sc
ra
tc
hp

ad
	

W
ri
te
	B
ac
k/

Ex
ec
u:

on
	

Sc
ra
tc
hp

ad
	R
ea
d/

W
ri
te
	B
ac
k/

Ex
ec
u:

on
	

Output
BUF
Bank1

Output
BUF
Bank2

Output
BUF
Bank3

Output
BUF
BankN

GEMM	Unit

O
ffc

hi
p

M
em

or
y

Permute
Engine

Figure 9. The Tandem Processor pipeline microarchitecture. The ALU and
scratchpad reads/write stages are interleaved to improve frequency.

the off-chip memory and the Tandem Processor, are popu-
lated/drained by a Data Access Engine at a tile granularity.
The Tandem Processor compiler configures theData Access
Engine by setting the base address of the off-chip source along
with a series of stride values. Note that, the tiled data may
be even dispersed across non-contiguous regions of memory
lines, yet statically arranged in strided patterns. IMM BUF
namespace serves as a small 32-slot scratchpad for immediate
values in non-GEMM operations. This buffer is programmed
with a series of customized instructions at the onset of non-
GEMM layer execution. The last namespace isOutput BUF,
which serves as theGEMMUnit’s buffer for output values.
Specialized on-chip data access.We place the Iterator Ta-
bles that are used to store the offset and stride information
for scratchpad accesses at the decode stage of the Tandem
Processor pipeline (see Figure 9). There is a dedicated Iterator
Table for each namespaces of the TandemProcessor. Upon de-
coding one arithmetic/logic instruction, the ⟨Namespace ID,
Iterator Index⟩ retrieves the address calculation information
from the corresponding Iterator Table. The resulting outputs
of accessing the Iterator Tables is a triplet address, two for
source operands and one for destination operand. Each el-
ement of the triplet is a tuple of ⟨offset, stride⟩, indicating
that target data resides in Scratchpad[offset + stride]. The
triplet address is passed down to the subsequent pipeline
stage (Strided Address Calculation) that repetitively assem-
bles a series of scratchpad addresses, each as the result of
offset + stride computation. The scratchpad indices propa-
gate down the multi-staged execution pipeline to fetch the
tiled operands, perform the non-GEMMoperations, andwrite
back the resulting data to the pipeline back-end.
Nested loop support. TheCode Repeatermodule (see Fig-
ure 9) uses three tables: A table stores the compiler-defined
iterationcounts.Eachentryof this tablemaintains theconfigu-
rationofoneof the loopnesting levels.Thecompilerorganizes
the loop configuration instructions from the outermost loop
to the innermost one. At the Decode/<Stride,Offset>/Read

7

pipeline stage,Code Repeater stores the number of iterations
in each table entry,which is indexedusing apointer that keeps
track of the number of nested loops. Once the Code Repeater
is configured, it uses the second table with similar structure
of entries to keep track of the current iteration of the loops.
Whenever, the Code Repeater exhausts the iterations of a
loop level, it decrements the pointer to update the iterations
of the ensuing outer loop. Finally, theCode Repeater uses a
collection of identical tables that store the information about
what Iterator IDs need to be exercised for each operand at a
certain loop level.

4.2 Overall Execution Flow and the GEMM-
Unit-Tandem-Processor Synchronization Logic

Figure 10 illustrates the overall execution for aDNN subgraph
on the NPU-Tandem. As shown, at a high level, the NPU-
Tandem encompasses (1) a GEMM unit (including weight/in-
put buffers), (2)Output Buf, which serves as a medium for
communicating data from GEMM unit to the Tandem Proces-
sor, (3) an execution controller that orchestrates the overall
execution and faciliates the synchronization between units,
and (4) an instruction buffer that holds the instructions of the
block. To execute DNNs, the compiler breaks the DNN graph
into a set of execution blocks or subgraphs (step 0 in Figure 10).
A block can be one of the followings: (1) a single GEMM layer,
(2) a group of bundled non-GEMM layers, (3) a GEMM layer
followed by a group of bundled non-GEMM layers (shown
in this example). To realize the in tandem execution, a uni-
form tiling scheme is required across the inputs/outputs of
fused layers in one block. Figure 10 shows four tiles of execu-
tion for fused GEMM (shownwith square) and non-GEMM
layers (shownwith circles). As Section 5 discusses, the syn-
chronization instructions mark the boundaries of GEMM and
non-GEMM instructions (see the instruction block format in
Step 0 of Figure 10). Figure 11 illustrates the high level view
of the execution controller logic for the Tandem Processor.
Below, we discuss the overall execution on theNPU-Tandem.
Instruction load and dispatch (Step 1 in Figure 10). First,
the Tandem Processor loads the instructions of a block from
off-chip memory into its Inst. BUF. Then, the FSM of the exe-
cution controller switches from Block Start to Inst. Dispatch
state (see Figure 11). At this state, the Tandem Processor’s
Inst. Dispatch unit drives the Program Counter to walk over
all the instructions of a block. Note that this is a lightweight
decode state and does not invoke any execution on theGEMM
unit or Tandem Processor. The Inst. Dispatch unit decodes
the synchronization instructions to identify the topology of
the block (GEMM only, non-GEMM only, or GEMM followed
by non-GEMM). It then decodes the GEMM instructions and
configures the GEMMunit, while writes back the non-GEMM
instructions to the Inst. BUF. Note that GEMMunits typically
operate at macro operations level (e.g.Conv/Matmul instruc-
tions),whenfirst a set of instructions are decoded to configure

the GEMM unit. Based on the configuration, this unit then
operates in a repetitive mode to fully execute the GEMM lay-
ers [12, 33, 72]. In contrast, the TandemProcessor is similar to
von Neumannmachines, where each instruction is decoded
and executed through the processor pipeline. As such, at the
end of this state, only non-GEMM instructions exist on Inst.
Buf to be decoded and executed by the Tandem Processor. Af-
ter the dispatch is done, based on the structure of the program
block, the execution FSM switches to either of these three
states: the GEMM state, the Tandem Processor state, and the
GEMM-Tandem Processor state (see Figure 11). Below, we
first discuss GEMM-Tandem Processor case as shown in the
example of Figure 10 and then discuss the Tandem Processor
only case.
GEMM-non-GEMM execution (Step 2 to Step 6 in Fig-
ure 10). If aGEMMlayer is followed by a series of non-GEMM
layers, the FSM transitions to the GEMM-Tandem Processor
state after the instruction dispatch. GEMM unit first starts
with executing the first tile (Step 2 in Figure 10). Whenever
the GEMMunit finishes the tile, it sends a handshaking signal
to the execution controller. If theTandemProcessor is idle, the
execution controller invokes Tandem Inst. Fetch unit to start
the execution of non-GEMM tile (see (FSM = Tandem | FSM
= GEMM-Tandem) & GEMM_tile_done signal in Figure 11.).
Utilizing a double-buffering scheme, theGEMMunit proceeds
to the next tile, while the Tandem Processor takes the outputs
of the GEMM-completed tile and performs the non-GEMM
operations (Step 3 in Figure 10). To avoid stalls in the GEMM
unit caused by theOutputBUF being occupied by theTandem
Processor, the compiler inserts a synchronization instruction
(see Section 5) right after the instructions consuming the data
on theOutputBUF. At this time, theTandem Inst. Fetch sends
a handshaking signal to the GEMM unit and Tandem Proces-
sor releases the Output BUF (OBUF_done -> GEMM Unit
in Figure 11). the Tandem Processormay continue the com-
putation using its private Interim BUFs. Once the Tandem
Processor finishes a tile, it uses the synchronization instruc-
tion that marks the end of the non-GEMM program to alert
the execution FSM (Tandem_done -> Exec. FSM in Figure 11).
The execution FSM puts the Tandem Processor in the idle
state until it receives the next tile from GEMM unit. After
finishing the all tiles (Step 2 to 6 in Figure 10), the execution
FSM transitions to the Block Done state (see Figure 11).
Non-GEMM only execution. The execution FSM transi-
tions from Inst. Dispatch to Tandem state and triggers the
Tandem Inst. Fetch to fetch the non-GEMM instructions and
forward them to Tandem Processor pipeline. Once Tandem
Processor completes executing all the instructions, the Tan-
dem Inst. Fetch unit sends a handshaking signal to the exe-
cution FSM logic. The execution FSM loops back to this state
if there are remaining tiles. To ensure the off-chip memory
access instructions are updated for different tiles, the first
tile is used to initialize configurations for the Data Access

8

…

GEMM

Mul

So(max

Add

T-1 T-2

T-3 T-4

T-1 T-2

T-3 T-4

Sync Inst.

Sync Inst.
Sync Inst.

Sync Inst.

Instruction
Block (stored

in DRAM)
DNN Subgraph

Exec	
Ctrl GEMM

O
BU

F

Tandem

Inst.
Buf

Exec	
Ctrl GEMM

O
BU

F

Tandem

Inst.
Buf

Exec	
Ctrl GEMM

O
BU

F

Inst.
Buf

Step 1: Instruction
load & dispatch

Step 2: GEMM
Tile-1 compute

T-1 Exec	
Ctrl GEMM

O
BU

F
Inst.
Buf

Step 3: GEMM
Tile-2, Tandem
Tile-1 overlap

Exec	
Ctrl GEMM

O
BU

F

Inst.
Buf

Tandem Tandem Tandem

Step 5: GEMM
Tile-4, Tandem
Tile-3 overlap

Step 6:
Tandem Tile-4

compute

Step 0: Compilation (layer fusion +
tiling) & instruction generation

Mapping to
GEMM Unit

Mapping to
Tandem

Processor

T-1

T-1 T-1

T-2 T-2

T-2 T-2

T-4 T-4

T-4 T-4

T-1 T-1 T-3 T-3 T-4 T-4

Figure 10.An example of end-to-end execution onNPU-Tandem.

Inst.	
Dispatch

Block	
Start

GEMM Tandem
GEMM-
Tandem

Block	
Done

Inst.
BUF

Program
Counter

Inst.
Dispatch

Tandem
Inst.	Fetch

InstrucAons	
to	GEMM	

Unit

Tandem	
InstrucAons	to	

Inst.	BUF

FSM	=	Inst.	
Dispatch

FSM	=	Tandem	|	
(GEMM-Tandem	&	
GEMM_Ale_done)

GEMM	Unit<-OBUF_done

Exec.	FSM<-Tandem_done

Tandem	Pipeline<-InstrucAons

Execu&on	FSM

Figure 11. The execution controller.

opcode func X group	ID X
4 bits 4 bits 3 bits 5 bits 16 bits

opcode func ns	id iter	idx Immediate
4 bits 4 bits 3 bits 5 bits 16 bits

opcode func dst	ns dst	iter	idx
4 bits 4 bits 3 bits 5 bits

src1	ns src1	iter	idx src2	ns src2	iter	idx
3 bits 5 bits 3 bits 5 bits

opcode func loop	id X Immediate
4 bits 4 bits 3 bits 5 bits 16 bits

opcode func src/dst dim	idx Immediate
4 bits 4 bits 3 bits 5 bits 16 bits

opcode func1 func2 loop	idx Immediate
4 bits 4 bits 3 bits 5 bits 16 bits

Synchronization

Configuration

Compute

Loop

Data
Transformation
Off-chip Data

Movement

Figure 12. The Tandem Processor instruction formats.

Engine. For rest of the tiles, theData Access Engine reuses the
initialized configurations and incrementally updates them.

5 ISADesign for the Tandem Processor
Figure 12 summarizes the instruction formats for the Tandem
Processor. Below we discuss its instruction classes.
Synchronization instructions. The func bits are defined
as ⟨GEMM/SIMD,START/END,EXEC/BUF,X⟩. The START/END
along with EXEC bit identifies the regions of instructions that
belong to the Tandem Processor andGEMMUnit (identified
with GEMM/SIMD bit accordingly), which helps dispatch in-
structions to the appropriate unit. Also, this instruction can
be usedwith EXEC bit to notify theGEMMUnit that the execu-
tionofnon-GEMMoperationsof the running tile is completed,
or with BUF bit to notify theGEMMUnit that theOUTPUT
BUF is released and ready for the subsequent tile.

Configuration instructions. This class includes two op-
codes. The ITERATOR_CONFIG opcode is usedwith three func-
tions (func bits): (1) BASE_ADDR to fill the Iterator Tables with
the base addresses for the scratchpads and (2) STRIDE to fill
the Iterator Tables with strides for the scratchpad address cal-
culation, and (3) IMMBUF to fill the immediate bufferwith the
immediatevaluesneeded fornon-GEMMoperations.Thens id
and iter idx fields identify the target namespace and the index
to its corresponding Iterator Table. Also, this instruction is
used to set the immediatevalues in IMMBUF.Anotheropcode
is DATATYPE_CONFIG, which is used for datatype casting.
Compute instructions.OpcodeALU is definedwith various
funcbits to supportAdd, Sub,Mul,MACC,Div,Max,Min, Shift,
Not, AND, OR operations on src1 and/or src2 operands. Addi-
tionally, this opcode supportsMOVE/COND_MOVE instruc-
tions for scatter/gather operations. In case of COND_MOVE ,
the first source operand (src1) is moved predicated upon true/-
false flags identified by the second operand (src2). Opcode
CALCULUS consists of mathematical operations such as ab-
solute value and sign. Opcode COMPARISON supports logical
comparisons. The operands (src1/src2/dst) for each instruction
are specified by using a 3-bit ns id to locate the buffer, and a
5-bit iter idx corresponding to the stride and offset.
Loop instructions. This class is used with the LOOP opcode
to configure the Code Repeater. This opcode is used with
SET_ITER function bits to specify the iterations for each loop
identified by loop id. The SET_NUM_INST function is used to
identify the number of instructions in the loop body. To cope
with the customized on-chip memory accesses for each loop
dimension, the SET_INDEX function is used, while the rest of
the instruction bits are used to set the associated ⟨ns ID, iter
idx⟩ for the three operands (similar to compute instructions).
The loop instructions are designed to support arbitrary levels
of nesting (up to eight, each of which is identified by loop id
field) needed by non-GEMM operators.
Data transformation instructions. This class is used with
two opcodes: (1) PERMUTE for permuting multi-dimensional
tensors using the Permute Engine shown in Figure 9 and (2)
DATATYPE_CAST for datatype casting. For PERMUTE opcode,

9

SET_BASE_ADDR,SET_LOOP_ITER, andSET_LOOP_STRIDE func-
tions configure the base addresses, shapes, and strides, respec-
tively, for both the source and destination’s tensor dimen-
sions (identified by dim idx). Then, with the START function,
the iterators start generating the address for the source and
destination according to the desired permutation. Addition-
ally, the LSB bit of the Immediate field while using the START
function identifies if this permutationoperation requires shuf-
fling the data across the SIMD lanes/scratchpad banks or not.
DATATYPE_CAST opcode is used to cast tensor elements to var-
ious fixed-point representations such as FXP32, FXP16, FXP8,
and FXP4 needed by the GEMM unit.
Off-chipdatamovement instructions. TILE_LD_ST opcode
describes the data tile transfer between off-chip memory and
Interim BUFs. The func1 field includes various fucntions: The
LD/ST_CONFIG_BASE_ADDR function is used to generate the
base addresses of each tile, then the shape and strides are con-
figured using the LD/ST_CONFIG_BASE_LOOP_ITER/STRIDE
functions.Also,LD/ST_CONFIG_TILE_LOOP_ITER/STRIDE func-
tions are used to configure theData Access Engine to gener-
ate the addresses required for each tile. Finally, LD/ST_START
function triggers the Data Access Engine to start populat-
ing/draining the intermediate buffers. The func2 field is used
to identify the target buffer between Interim BUF 1&2.

6 Compilation for the Tandem Processor
Tiling optimization. Compiler realizes software-pipelining
by choosing the optimized tiling strategy. To improve the
Tandem Processor’s utilization, the compiler does not tile the
reduction dimensions in GEMM operations. otherwise, the
GEMMUnitproducespartial results thatwouldbe insufficient
for the Tandem Processor to perform its operations, causing
it to stall. Additionally, the compiler finds the optimal sizes
for tiles that are big enough to encompass all the adjacent ele-
ments of an input tensor for the non-GEMM operation, while
small enough to fit on the limited on-chip scratchpads. For in-
stance, to performDepth-wise Conv operation with a kernel
size5×5, itwould require theTandemProcessor tohaveaccess
to all the elements in the 5×5 patch or it is inevitable to stall.
Dependency relaxation. The Tandem Processor leverages
the regularity in the non-GEMM operations and eliminates
the dependency check in the hardware, while shifting the
burden to the compiler. TheTandemProcessor compiler lever-
ages loop fission [96] to remove dependencies among series
of instructions. Additionally, some non-GEMM operations
such asMaxPool has a long sequence of dependencies among
instructions. For such cases, the compiler leverages loop in-
terchange [96] to relax the dependencies.
Compilationworkflow.Figure 13describes the compilation
workflow for the Tandem Processor. The compiler uses the
ONNX format of DNNs and the architecture configuration of
the Tandem Processor (e.g. number of lanes, Interim BUF) as
its inputs. The compiler maps the ONNX node to pre-defined

Architecture	
Configura0on

Template	
Mapping

ONNX	
Model

Executable	
Instruc0ons	
(binaries)

MatMul

add(a[M,N], b[M,N])->c[M,N] {

 for m(M/M1) {

 for n(N/N1) {

 a1=LOAD(a[n,m], [N1,M1])

 b1=LOAD(b[n,m], [N1,M1])

 for m(M1) {

 for n1(N1) {

 c1=ADD(a1,b1)

 }

 }

 STORE(c[n,m], c1)

}}}

LD_CONFIG_TILE_LOOP_ITER 0, InterimBUF1,24

LD_CONFIG_TILE_LOOP_STRIDE LSB, InterimBUF1,24,1024

LD_CONFIG_TILE_LOOP_STRIDE MSB, InterimBUF1,24,1024

 LD_START 0,InterimBUF1,31,128

 …

SET ITER 0,0,14

 SET_INDEX InterimBUF2,1,InterimBUF1,0,InterimBUF22,0

 SET ITER 1,0,32

 SET_INDEX InterimBUF2,2,InterimBUF1,1,InterimBUF2,1

 SET_INST 1,0,1

 ADD InterimBUF2,0,InterimBUF1,0,InterimBUF2,0

 …

ST_CONFIG_TILE_LOOP_ITER 0, InterimBUF1,24

ST_CONFIG_TILE_LOOP_STRIDE LSB, InterimBUF1,24,1024

ST_CONFIG_TILE_LOOP_STRIDE MSB, InterimBUF1,24,1024

 ST_START 0, InterimBUF1,31,128

Op0miza0on
Opera0on	
Templates

Op0mized	
Templates

Instruc0on	
Genera0on

Add

MatMul

Add

MatMul

Figure 13. Compilation workflow.

operation templates. However, as discussed in Section 3.4,
not all non-GEMM operators are directly supported by the
Tandem Processor. Therefore, for such complex operations
(e.g., Softmax, Sqrt, Gelu) the compiler translates them to an
integer-based counterpart [92, 93]. After mapping to the tem-
plates, the parameters of the operation templates are replaced
with real values according to the ONNX layers. The compiler
then performs the aforementioned optimizations. Finally, the
compiler iterates the statements in the template and lowers
them into instructions based on the Tandem Processor ISA.

LOAD and STORE statements are lowered to TILE_LD_ST
with BASE_LOOP_ITER/STRIDE functions for each LOOP vari-
ables, to set the number of iterations and strides in DRAM
(a summarized version is shown in Figure 13). Then, the tile
transfer instructions (LD/ST_CONFIG_TILE_LOOP_ITER/STRIDE)
are generated using the tile shape in the LOAD and STORE
statements. Compute operations are lowered to a set of inner
LOOP instructions along with the pertinent compute instruc-
tion. For compute operations reading fromOutput BUF, the
compiler generates additional synchronization instructions.

7 EvaluationMethodology
Benchmarks. To evaluate the efficacy of the Tandem Proces-
sor, we formour benchmark suite fromdomains of image clas-
sification (VGG-16 [62],ResNet-50 [74],MobileNetv2 [76],Ef-
ficientNet [77]), object detection (Yolov3 [75]), and emerging
languagemodels (BERT [63],GPT-2 [64])withbatchsize1 that
is used for real-time AI [35], single-stream, and offline scenar-
ios [97].TheseDNNbenchmarksconstituteadiverse setof lay-
ers with various dimensions and types of operations (e.g. Re-
lu/LeakyRelu/Clip,Maxpool/GlobalAveragePool,Depth-wise
convolution,ResidualAdd,ReduceMean,Exp,Transpose, etc.)
Hardware implementation and synthesis.We implement
the Tandem Processor in Verilog and synthesize it using Syn-
opsys Design Compiler R-2020.09-SP4with Global Foundries
65nmlibrary.WealsoperformplaceandrouteusingSynopsys
IC Compiler L-2016.03-SP1. Additionally, we synthesize the
Tandem Processorwith FreePDK 15nm open cell library and
meet the1Ghz target frequency.Toobtainpowerof thedesign,
we use the synthesis results in FreePDK 15 nm for logic cells
and model the on-chip memory energy using CACTI-P [98].

10

Table 3.Microarchitectural configurations for theNPU-Tandem.

Configs/Units Systolic Array Tandem Processor

Dimensions 32×32 32 Lane
Scratchpads 384 KB 128 KB (Interim BUF 1&2)
Accumulators 128 KB N/A
Datatypes INT8 (Mult) and INT32 (Acc) INT32
Frequency 1 GHz 1 GHz

Simulation infrastructure.We develop a cycle-accurate
simulator for theTandemProcessor thatusescompiler-generated
instructions and provides cycle counts and energy statistics.
We validate the functionality of the simulator and RTL im-
plementation by comparing the simulator/RTL-generated
outputs with ground truth software implementation. These
validations also show the closeness of the number of cycles
by error margin of ≤ 5%. For end-to-end results, following the
methodologies of [12, 54, 72, 99], we develop a cycle accurate
simulator for a systolic array based GEMM Unit and inte-
grate it with the Tandem Processor simulation infrastructure
following the insights in Section 3.5.
Comparison to off-chip CPU fallback and dedicated
units (Class (1) and (2) in Section 2.3) We compare the
NPU-Tandemwith the configurations listed in Table 3 to (1) a
PCIe-attached (third generationwith eight lanes) GEMMunit
and an off-chip Intel Core i9-9980XE Extreme Edition CPU to
support non-GEMM layers, (2) a GEMMunit augmentedwith
a number of dedicated hardware blocks that support Relu,
Clip, Residual Add, MaxPool, and scale & shift, similar to the
design in [72]. This baseline still falls back to the CPU for un-
supported layers.Wemeasured theGEMMunit and dedicated
units runtime using our aforementioned simulator and the
CPU time using ONNX Runtime [100]. Finally, we measure
the PCIe communication for all required data transfers in
benchmarks using a Xilinx Alveo u280 FPGA connected to
host CPUvia PCIe. All baselines use the same frequency, num-
ber of PEs, and on-chip memories as in Table 3. For energy
comparisons, we estimate the power of the GEMM unit using
energy reports provided by prior works [69, 101], and model
the energy of PCIe transactions according to [102].
Comparison to Gemmini [72] (Class (3) in Section 2.3).
We compare theNPU-Tandemwith Gemmini [72] that inte-
grates a systolic array, a set of peripheral dedicated units (sim-
ilar to those mentioned above), and a single RISC-V CPU core.
WeuseONNXRuntime [100] andcycle-accurateFiresim[103]
simulator to obtain performance numbers for Gemmini. For a
fair comparison, we exclude all the runtime/OS-related over-
heads. Additionally, for an iso-resource comparison, we use
a scaled up Gemmini-like design that integrates the same
number of cores as the number of ALU lanes in the Tandem
Processor. To obtain the performance, we optimistically scale
down the CPU runtime for Gemmini with the number of
integrated cores.

Comparison to Google’s VPU (Class (4) in Section 2.3).
To eliminate the bias in comparisons due to the differences
in the accelerators size, technology nodes, and the GEMM
unit design and its optimizations, we model the behavior of
Google’s VPUwithin our simulation infrastructure according
to Google’s patent on VPU [85]. Concretely, we model the
overheads of data communication (load/store instructions)
between the scratchpads and vector register files in addition
to nested loop execution due to the lack of specialized support
for them on VPU. We modeled the benefits of using special
functions in VPU for computing operations such as square
root and exponential. TPU overlaps the execution of GEMM
unit and VPU by forwarding the GEMM outputs through
FIFOs to the VPU’s scratchpads. Wemodeled this overhead.
Comparisons to GPUs (Class (4) in Section 2.3).We use
NVIDIA’s Jetson Xavier NX as a mobile GPU baseline and
NVIDIA’s RTX 2080 TI as a high-performance GPU baseline.
We run all DNNs on GPU baselines using TensorRT v7.2.3.
We also compare the performance of the NPU-Tandem to
NVIDIA A100 GPU in an iso-TOPs (iso-resource) setting. We
scale up both the GEMM (MAC units of GEMM unit) and
non-GEMM (ALUs in the Tandem Processor) resources of the
NPU-Tandem by 216× to match the TOPs of A100 for both
GEMM and non-GEMM operations. As such, in this setting,
both designs use the same amount of resources forGEMMand
non-GEMM operations. We measure the runtime for A100 in
two ways: (1) We use the TensorRT to obtain optimized end-
to-end numbers for A100. However, TensorRT environment
does not allow layer-wise DNN execution profiling to get the
statistics on the breakdownof runtime acrossGEMMandnon-
GEMM operations. As such, (2) we also use ONNX Runtime
withCUDAExecutionProvider for runtimemeasurement and
layer-wise profiling. We compare theNPU-Tandem end-to-
end runtime to both measurements and use the CUDA-based
results to further analyze the runtime based on its breakdown
across GEMM and non-GEMM operations.

8 Experimental Results
Comparisons to offchip CPU fallback and dedicated
units. Figure 14 compares performance of theNPU-Tandem
with baselines (1) using offchip CPU fallback and (2) using
dedicated units. The results are normalized to the baseline (1).
Onaverage, theNPU-Tandemprovides 3.5×and2.7× speedup
compared to baseline (1) and baseline (2), respectively. The
Tandem Processor not only eliminates the overheads of com-
munication with offchip over PCIe and improving resource
utilization, it also minimizes the overheads of instruction or-
chestration and data access compared to the general purpose
CPU. The improvements provided by the Tandem Processor
are more pronounced forMobileNet-v2 (5.9× over baseline
(1) and 5.4× over baseline (2)) and BERT (5.4× over baseline
(1) and 4.5× over baseline (2)) due to the use of more complex

11

Improvement over Gemmini-1rckt
32 rct simd

VGG-16 2.245720762 1.8
ResNet-50 2.531846018 4.9

MobileNet-v2 1.098832352 5.9
EfficientNet 1.063113205 4.3

Yolov3-DarkNet 1 3.5
BERT 1.186776017 5.4

GPT-2 1.084917766 1.5
Geomean 1.3 3.49294486743747

Sp
ee

du
p/

C
PU

Fa

llb
ac

k

0.0x

2.0x

4.0x

6.0x

VGG-16
ResNet-50
MobileNet-v2
EfficientNet
Yolov3

BERT

GPT-2
Geomean

3.5
1.5

5.4
3.54.3

5.94.9

1.8
1.31.11.21.01.11.1

2.52.2

Dedicated Units + Offchip CPU + GEMM Unit
NPU-Tandem

Figure 14. Performance comparison to offchip CPU
fallback and dedicated units.

Improvement over Offchip CPU
dedicated simd

VGG-16 5.061900072 2.262067965
ResNet-50 9.92354062120.76144306

MobileNet-v2 1.107283412198.6515373
EfficientNet 1.052943265174.7545648

Yolov3-DarkNet 1 15.90673428
BERT 1.2 160.6321724

GPT-2 1.110404101 34.43355362
Geomean 1.8635003111422339.2474362566954

En
er

gy

Re
du

ct
io

n/
C

PU

Fa
llb

ac
k

0.0x

10.0x

20.0x

30.0x

VGG-16
ResNet-50
MobileNet-v2
EfficientNet
Yolov3
BERT
GPT-2
Geomean

39.234.4160.6

15.9

174.8198.7

20.8

2.3 1.91.11.21.01.11.1

9.9
5.1

Dedicated Units + Offchip CPU + GEMM Unit
NPU-Tandem

Figure 15. Energy reduction comparison.

Improvement over Gemmini-1rckt
32 rct simd

VGG-16 1 0.9
ResNet-50 2.73873753 5.5

MobileNet-v2 7.038435588 248.7
EfficientNet 8.110584666 278.6

Yolov3-DarkNet 20.9597546 95.9
BERT 21.11930741 49.6

GPT-2 31.30657228 352.5
Geomean 8.037323390804947.8586247233236

Sp
ee

du
p/

G
em

m
in
i-1

C
or
e

0.0x

10.0x

20.0x

30.0x

VGG-16
ResNet-50
MobileNet-v2
EfficientNet
Yolov3-DarkNet
BERT
GPT-2
Geomean

47.9352.549.695.9278.6248.7

5.5
0.9

8.0

31.3

21.121.0

8.17.0
2.71.0

Gemmini-32Cores NPU-Tandem
248.7 278.6 95.9 49.6

31.2
352.5 47.8

Figure 16. Comparison with Gemmini [72].

Energy Breakdown
Pla$orm GEMM dedicate

d
risc-v

gemmini VGG-16 0.9883011574 0 0.01169884257
gemmini ResNet-50 0.11038006470.23427205420.6553478811
gemmini MoileNet 0.085781237920.91377944970.0004393123924
gemmini EfficientNet 0.065034030980.9348704212 9.55E-05

gemmini Yolov3 0.0094315882830.083135452620.9074329591
gemmini BERT 0.016618230075.05E-05 0.9833312982
gemmini GPT-2 0.01 0 0.99

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

Bi
Hi

w
e

Bi
Hi

w
e

MemN2N

Bi
Hi

w
e

BERT-B-G BERT-L-S

Bi
Hi

w
e

Bi
Hi

w
e

Bi
Hi

w
e

Ru
nt

im
e

Br
ea

kd
ow

n

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

1.
3x

1.
3x

BERT-B-S BERT-L-G

Baseline

LeOPArd -P

LeOPArd

ALBERT GPT-2-L

ResNet-50

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

0%

20%

40%

60%

80%

100%

gemmini VGG-16 gemmini ResNet-50 gemmini MoileNet gemmini EfficientNet

GEMM Dedicated RISC-V

G
EM

M
N

on
-G

EM
M

C
om

m

MobileNet-v2

EfficientNet

Yolov3

BERT
VGG-16

GPT-2

Figure 17.Gemmini time breakdown.

Accumulated Improvement over TPU+VPU
LD/ST
RegFile

+Loop +OBUF +Special
Func

VGG-16 1 1.2 1.32 1.32
ResNet-50 1.2 1.9 2.1 2.112

MobileNet-v2 1.6 6.1 6.08 4.864
EfficientNet 1.6 5.9 5.92 5.328

Yolov3-DarkNet 1 1.2 1.44 1.44
BERT 1.4 4.1 4.5 2.7
GPT-2 2.9 5.5 6.1 3.0

Geomean 1.434048673583783.00762582750123.259780632499542.61884828471967

0.0x

2.0x

4.0x

6.0x

VGG-16

ResNet-50
MobileNet-v2
EfficientNet

Yolov3

BERT

GPT-2

Geomean

2.6
3.02.7

1.4

5.3
4.9

2.1
1.3

3.3

6.1

4.5

1.4

5.96.1

2.1
1.3

3.0

5.5

4.1

1.2

5.96.1

1.9
1.2 1.4

2.9

1.4
1.0

1.61.6
1.21.0

LD/ST to/from RegFile + Specialized Loop
+ OBUF Data Movement v.s. FIFO + Special Func. Support (Overall)

Sp
ee

du
p

O
ve

r T
PU

Improvement over TPU+VPU-1
LD/ST RegFile Loop OBUF Special Func Overall

VGG-16 1 1.2 1.1 1 1.3
ResNet-50 1.2 1.6 1.1 1 2

MobileNet-v2 1.6 3.8 1 0.8 5.1
EfficientNet 1.6 3.7 1 0.9 5.1

Yolov3-DarkNet 1 1.2 1.2 1 1.4
BERT 1.4 2.9 1.1 0.6 2.7
GPT-2 2.9 1.9 1.1 0.5 3

Geomean 1.43404867358378 2.1 1.08383848904764 0.803381754775194 2.58287757755415

Figure 18. Performance comparison to TPU+VPU and analyzing the contri-
bution of each Tandem Processor’s specialization.

non-GEMM operations in their structure (depth-wise convo-
lution inMobileNet-v2 and large number of mathematical
and transpose operations in BERT) that significantly affect
the total runtime. Figure 15 compares the energy reduction
benefits of Tandem Processor. On average, theNPU-Tandem
reduces the total energyconsumptionby39.2×and20.6× com-
pared to baseline (1) and baseline (2), respectively. These large
improvements are due to the significant time that baselines (1)
and (2) spend on the power-hungry off-chip CPU (as shown
in Figure 3) with a TDP of 165Watts as opposed to 2.7Watts
in the Tandem Processor. The results show that generally as
DNNs evolve and use more complex structures and non-GEMM
operations, the benefits of the Tandem Processor grow.
Comparison to Gemmini.As Figure 16 shows, on average,
theNPU-Tandem provides 47.8× performance improvements.
Figure 16 also evaluates the improvements over an extended

Accumulated Improvement over TPU+VPU
LD/ST
RegFile

+Loop +OBUF +Special
Func

VGG-16 1.1 1.1 1.1 1.1
ResNet-50 1.1 1.21 1.21 1.21

MobileNet-v2 1.4 1.82 2.002 2.002
EfficientNet 1.4 1.82 1.82 1.82

Yolov3-DarkNet 1.1 1.1 1.1 1.1
BERT 1.1 1.32 1.32 1.188
GPT-2 1.6 1.92 1.92 1.728

Geomean 1.243265343827331.431052363294861.450670454494551.40765166132875

0.0x

1.0x

2.0x

3.0x

VGG-16

ResNet-50
MobileNet-v2
EfficientNet

Yolov3

BERT

GPT-2

Geomean

1.4
1.7

1.21.1

1.8
2.0

1.21.1
1.5

1.9

1.3
1.1

1.8
2.0

1.21.1
1.4

1.9

1.3
1.1

1.81.8

1.21.1 1.2
1.6

1.11.1
1.41.4

1.11.1

LD/ST to/from RegFile + Specialized Loop
+ OBUF Data Movement v.s. FIFO + Special Func. Support (Overall)

En
er

gy
 R

ed
uc

tio
n/

TP
U

Improvement over TPU+VPU-1
LD/ST RegFile Loop OBUF Special Func Overall

VGG-16 1.1 1 1 1
ResNet-50 1.1 1.1 1 1

MobileNet-v2 1.4 1.3 1.1 1
EfficientNet 1.4 1.3 1 1

Yolov3-DarkNet 1.1 1 1 1
BERT 1.1 1.2 1 0.9
GPT-2 1.6 1.2 1 0.9

Geomean 1.24326534382733 1.15104339584455 1.01370885629547 0.970345578465104

Figure 19. Energy reduction over TPU+VPU and analyzing the contribution
of each Tandem Processor’s specialization.

Improvement over PREMA
Rtx	2080	ti genesys

VGG-16 1.205681097 1.4
ResNet-50 0.3017264104 2.1

MobileNet-v2 3.469761334 17.5
EfficientNet 3.464175466 10.3

Yolov3-DarkNet 0.3017858353 1.7
BERT 0.3435823767 5.2
GPT-2 0.3435823767 12.83943153

Geomean 0.7667321890093334.81665798074517

Pe
rfo

rm
an

ce
 P

er

W
at

t/J
et

so
n

Xa
vi

er

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

VGG-16
ResNet-50
MobileNet-v2
EfficientNet
Yolov3
BERT

GPT-2
Geomean

4.8

12.85.2

1.7

10.317.5

2.1

1.4

0.8

0.30.30.3

3.53.5

0.3

1.2

RTX 2080 TI NPU-Tandem
17.5

17
.5

10
.3

10.3 5.2 4.8

0.8

12.8

Figure 20. Comparisons to Jetson Xavier and RTX 2080-TI GPUs.

version of Gemmini that integrates the same number of RISC-
V cores as the number of SIMD lanes in the TandemProcessor.
On average, using multiple cores improves the performance
of Gemmini by 8.0×. Compared to this design point, theNPU-
Tandem provides 5.9× speedup, on average (with maximum
of 35.3× forMobileNet-v2 and minimum of 0.9× for VGG-16).
To understand the sources of improvements, Figure 173

shows the runtime breakdown of Gemmini (default setting of
one RISC-V core) across its three main components of GEMM
unit, dedicated units, and RISC-V core. ForMobileNet-v2 and
EfficientNet, Gemmini spends a large amount of time (90%
of runtime) on its im2col dedicated unit to convert the depth-
wise convolutions to a series of GEMM operations. This not
only requires a time-consuming im2col operation, but also
results in additional GEMM operations with low resource uti-
lization. On the other hand, the Tandem Processor executes
3Figure 24 shows the runtime breakdown for theNPU-Tandem.

12

Improvement over PREMA
TRT/CUDA NPU-Tandem/

CUDA
VGG-16 2.71 1.886

ResNet-50 6.05 6.2
MobileNet-v2 5.49122807 8.025641026
EfficientNet 5.424635332 5.841186736

Yolov3 3.870910698 2.424752637
BERT 4.898498928 6.846701035
GPT-2 1.665863454 1.97767723

Geomean 3.965753829512624.0540429484151

0.0x

3.0x

6.0x

9.0x

VGG-16
ResNet-50
MobileNet-v2
EfficientNet
Yolov3

BERT

GPT-2
Geomean

4.1

2.0

6.8

2.4

5.8

8.0

6.2

1.9

4.0

1.7

4.9
3.9

5.45.56.1

2.7

A100-TensorRT NPU-Tandem

Sp
ee

du
p/

A1
00

-C
U

D
A

0.
47

 m
s

0.
39

 m
s

1.
40

 m
s

1.
13

 m
s 2.

49
 m

s

0.
34

 m
s

0.
62

 m
s

Figure 21. Performance comparison toA100with
CUDA and TensorRT execution, in iso-TOPs set-
ting. Results are normalized to CUDA execution.

Energy Breakdown
Pla)orm GEMM

%
NON_G
EMM %

VGG-16 NPU-Tandem 0.86 0.14
VGG-16 A100-CUDA 0.79 0.21
ResNet-50 NPU-Tandem 0.73 0.27
ResNet-50 A100-CUDA 0.78 0.22
MobileNet
v2

NPU-Tandem
0.23 0.77

MobileNet
v2

A100-CUDA
0.57 0.43

EfficientNe
t

NPU-Tandem
0.15 0.85

EfficientNe
t

A100-CUDA
0.56 0.44

Yolov3 NPU-Tandem 0.57 0.43
Yolov3 A100-CUDA 0.78 0.22
BERT NPU-Tandem 0.43 0.57
BERT A100-CUDA 0.29 0.71
GPT-2 NPU-Tandem 0.43 0.57
GPT-2 A100-CUDA 0.36 0.64

0%

25%

50%

75%

100%

VGG-16 VGG-16 ResNet-50 ResNet-50 MobileNetv2 MobileNetv2 EfficientNet EfficientNet Yolov3 Yolov3 BERT BERT GPT-2 GPT-2

GEMM Runtime % NON_GEMM Runtime %

N
PU

-T
an

de
m

A1
00

-C
U

DA

N
PU

-T
an

de
m

A1
00

-C
U

DA

N
PU

-T
an

de
m

A1
00

-C
U

DA

N
PU

-T
an

de
m

A1
00

-C
U

DA
N

PU
-T

an
de

m

A1
00

-C
U

DA

N
PU

-T
an

de
m

A1
00

-C
U

DA
N

PU
-T

an
de

m

A1
00

-C
U

DA

VGG-16

ResNet-50

MobileNet-v2

Yolov3

EfficientNet

BERT
GPT-2

Figure 22. Runtime breakdown analysis for the
scaled-up Tandem Processor and A100 GPUwith
CUDA execution in iso-TOPs setting.

Table 1

non-GEMM
Speedup/A100-
CUDA

VGG-16 2.9596

ResNet-50 5.232492061

MobileNet-v2 4.481851482

EfficientNet 3.023673134

Yolov3 1.255299599

BERT 8.525722797

GPT-2 2.235196053

Geomean 3.37812289910393

0.0x

2.0x

4.0x

6.0x

8.0x

VGG-16
ResNet-50
MobileNet-v2
EfficientNet
Yolov3
BERT
GPT-2
Geomean

3.4
2.2

8.5

1.3

3.0

4.5
5.2

3.0

Figure 23.NPU-Tandem speedup for non-GEMM
operations over A100 in iso-TOPs setting.

these operations natively and more efficiently without any
need for im2col and overlaps themwith other convolutions,
as well. For YoloV3, BERT, andGPT-2 RISC-V core is the bot-
tleneck. These DNNs require a significant number of complex
mathematical operations such as Leaky ReLU in YoloV3 and
GeLu, ReduceMean, Sqrt, Softmax, etc, in BERT andGPT-2,
not supported by dedicated units. Note that, Gemmini uses
one single RISC-V core (with 40% more area than the 32-lane
Tandem Processor), which has one ALU to process all these
operations on large tensors. For ResNet-50, still RISC-V core
is the bottleneck, because of the last AveragePool layer (this
layer takes the average of 7×7 featuremaps for 2048 channels).
In contrast, the TandemProcessorminimizes the cost of these
operations and seeks to overlap themwithGEMMones. These
results show that for DNNs with more complex non-GEMM
layers, paying the cost of PCIe and using a high-performance
offchip CPU (and dedicated units) provides better performance
than an on-chip CPU in Gemmini.
Performance comparison to Google’s TPU. Figure 18
compares the end-to-end performance of theNPU-Tandem
to a TPU-like design that leverages the general-purpose VPU
for non-GEMM layers. According to the Google’s patent on
VPU [85], we considered the following specializations for
TPU: 1) strided address generation for LD/ST betweenDRAM
and scratchpad, 2) strided address generation for LD/ST be-
tweenscratchpadandvector registerfile, 3) software-pipelining
of GEMM and non-GEMM through FIFOs, and 4) supporting
specialized instructions for mathematical functions such as
exp, sqrt, clip, etc.. As such, the benefits of Tandem Processor
over VPU stem from 1) removing the vector register file and
its LD/ST overheads, 2) supporting specialized nested loop
execution, and 3) software-pipelining through reading from
OBUF directly as opposed to FIFOs. On the other hand, sup-
porting special functions in VPU can boost its performance
over theNPU-Tandem. Figure18 analyzes the impacts of these
four design decisions individually. For each benchmark four
bars are reported. The first bar shows the speedup achieved
onlyby removingRegFile and its LD/SToverheads, the second
shows the impact of specialized loop execution on top of the

RegFile LD/ST, the third shows speedup when the benefits of
OBUF data movement is also considered on top of two previ-
ous decisions, and finally the last bar includes the slowdown
impact of not supporting specialized functions as well. In an-
otherword, the last bar includes the impacts of the four design
decisions and is the final end-to-end speedup. On average, the
NPU-Tandem offers 2.6× speedup. Among the four design de-
cisions, supporting specialized loop execution in the Tandem
Processor provides the maximum speedup, 2.1× on average.
The benefits due to this design decision are more pronounced
forMobileNet-v2 and EfficientNetwith depth-wise convolu-
tion layers, an operation with five nested loops. The second
most effective technique is eliminating the register file and its
associated LD/ST operations from/to scratchpad, providing
1.4× speeduponaverage.GPT-2 enjoys themaximumbenefits
from this specializationwith 2.9× speedup. Direct data access
throughOBUF in theTandemProcessor as opposed tomoving
data throughFIFOsacrossGEMMunit andVPU,provides1.1×
speedup on average, while not having hardware support for
special functions causes 0.8× slowdown on average. Having
the hardware support and dedicated instructions for special
functions provides maximum benefits for VPU for BERT and
GPT-2, since complex mathematical operations such as sqrt
and exp (for softmax) are heavily used in their structure. Note
that this speedup comes at the cost of extra area and design
complexity forVPUwhich its quantificationwould require ac-
cess to the exact hardware implementation that is not publicly
available. Overall considering the impact of four design deci-
sions,MobileNet-v2, EfficientNet, andGPT-2 show the most
benefits forNPU-Tandem, while VGG-16 showing the least.
Energy comparison to Google’s TPU. Figure 19 shows the
end-to-end energy reduction achieved by theNPU-Tandem
over TPU+VPUwhile analyzing the impact of the aforemen-
tioned design decisions individually. On average, theNPU-
Tandem provides 1.4× energy reduction. Among the bench-
marks the benefits are more pronounced forMobileNet-v2,
EfficientNet, andGPT-2 (2.0×, 1.8×, and 1.7×, respectively),
while VGG-16 and Yolov3 observes the minimum benefits

13

(1.1×). Eliminating the RegFile and its LD/ST overheads pro-
vides the maximum energy reduction with the average of
1.2×. Specialized support for nested loop is the second most
effective technique. Although specialized loop management
provides significant speedups, its energy benefits are less pro-
nounced due to their amortization across the SIMD lanes of
the VPU. Support for specialized functions in VPU realizes 7%
lower energy for TPU, on average, by replacing several prim-
itive operations with a single yet more complex instruction.
Comparison to Jetson Xavier and RTX 2080 TI GPUs.
Figure 20 compares the performance-per-Watt benefits with
Jetson Xavier NX and RTX 2080 TI GPUs, where the results
are normalized to Jetson Xavier. RTX 2080 TI is less energy-
efficient compared to mobile Jetson Xavier (20% lower on
average). However, theNPU-Tandem provides 4.8× improve-
ments, compared to Jetson Xavier. The trends in the results re-
main almost similar to the previous analyses withMobileNet-
v2 exhibiting the maximum benefits. RTX 2080 TI is more ef-
ficient than Jetson Xavier forMobileNet-v2 and EfficientNet,
because it can better parallelize the depth-wise convolutions
across its abundant threads, compared to Jetson Xavier that
employs relatively less number of threads.
Comparison to theA100GPU. Figure 21 compares the end-
to-end speedup of theNPU-Tandem to the A100 GPU with
TensorRT and CUDA execution in an iso-TOPs setting. On
average, theNPU-Tandem offers similar performance toA100
GPUwith TensorRT execution (2.5% improvements) and 4.0×
speedup compared to the A100 with CUDA execution. The
NPU-Tandem outperforms A100 with TensorRT for ResNet-
50,MobileNet, EfficientNet, BERT, and GPT-2, while A100
providing better performance for VGG-16 and Yolov3 that
are mainly composed of heavy GEMM operations. Compared
to A100 with CUDA execution, the NPU-Tandem provides
maximum benefits forMobileNet-v2 and BERT.
Figure 22 shows the runtime breakdown across GEMM

and non-GEMM operations for theNPU-Tandem and A100
GPU with CUDA execution. The NPU-Tandem accelerates
both GEMM and non-GEMM operations compared to A100
with CUDA execution. However, for DNNs that have larger
portion of non-GEMM runtime on A100 (e.g.,MobileNet, Ef-
ficientNet, BERT, andGPT-2),NPU-Tandem provides larger
end-to-end speedups, demystifying the impact of accelerating
the non-GEMMoperations using the Tandem Processor. This
trend in speedups still holds while comparing to TensorRT as
well, since the benchmarks mentioned above are those with
the largest speedups by theNPU-Tandemwith respect to this
mode of execution (see Figure 21).

Figure 23 compares the performance of the TandemProces-
sor to A100 CUDACores for performing only non-GEMM op-
erationsofbenchmarkDNNs inan iso-TOPs/resources setting.
TheTandemProcessor accelerates thenon-GEMMoperations
forall benchmarksandonaverageprovides3.4× speedupcom-
pared toA100CUDACores.Thebenefitsaremorepronounced

for BERT (8.0×), ResNet-50 (5.2×), andMobileNet-v2 (4.5×).
AlthoughGPT-2 comprise a large portion of non-GEMMs sim-
ilar toBERT, the performance of scaled-up Tandem Processor
is mainly bounded by the memory bandwidth for this DNN
and hence showing relatively lower speedup compared to
BERT. The results show that the Tandem Processor’s unique
microarchitectural design effectively reduces the overheads
of data delivery (LD/ST to RegFile) and required address cal-
culations and loopmanagements for non-GEMMoperations.
Runtimebreakdownanalysis for theTandemProcessor.
Figure 24 shows the runtime breakdown of theNPU-Tandem
across GEMM and various non-GEMM layers. As the result
show, non-GEMM layers are very diverse in terms of execu-
tion runtime. The proposed specializations in the Tandem
Processor significantly reduce the overhead of non-GEMM
layers in DNNs such as VGG-16, ResNet-50, and Yolov3. On
the other hand, some DNN layers such as depthwise convolu-
tion inMobileNet-v2 and EfficientNet, GELU and transpose
in BERT, and ReduceMean in GPT-2 still take a significant
portion of runtime. Compared to the baselines, GEMM layers
only become a more significant runtime component, when
the highly specialized Tandem Processor is used to reduce
the overheads of non-GEMM layers.
Energy breakdown analysis for the Tandem Processor.
Figure 25 shows the energy breakdown of the Tandem Pro-
cessor across off-chip memory accesses, on-chip memory
(Interim BUF) accesses, ALU logic, loop + address calculation
logic, and the rest of the Tandem Processor logic (decode,
muxing logic, etc.) Although non-GEMM layers are memory
bound operations, but off-chip memory accesses take about
only 31% of the total energy on average, due to the seamless
integration of Tandem Processor and the GEMM unit which
minimizes the number of off-chip data transfer. The on-chip
memory accesses take 13% of the total energy, on average,
due to removing overheads of register files and associated
memory hierarchy from the design. ALU logic takes 12% of
the total energy because of leveraging integer primitive im-
plementation philosophy in its design. Overall, the nested
loop execution control and scratchpad address calculation
logic takes the majority of the energy consumption in the
Tandem Processor (40%), since they handle the heavy lifting
portion of the overall execution.
The Tandem Processor layout. Fig. 26(a) shows the lay-
out of the Tandem Processor occupying 1.02𝑚𝑚2. Fig. 26(b)
shows the post-layout area breakdown. ALU logic occupies
the largest area (56.6%), InterimBUF1&2 is the second (29.2%)
and the permute logic is the third (12.0%). The rest of the area
is mainly for muxing logic, pipeline registers,Code Repeater
and decode logic.

9 RelatedWork
Section 2.3 covers the relatedwork on supportingnon-GEMM
layers. Below,wediscuss thepriorworkonSIMD/vector units.

14

Energy Breakdown
Pla$orm GEMM Add ReLU Clip LeakyR

eLU
DW-
Conv

Transpo
se

Reduce
Mean

Softmax GELU Others

XSIMD VGG-16 0.9363974192 0 0 0 0 0 0 0 0 0 0.06217644857

XSIMD ResNet-50 0.74257146820.20892271610.02 0 0 0 0 0 0 0 0.0285058157

XSIMD MoileNet 0.15618982780.02043391456 0 0.01 0 0.7970098709 0 0 0 0 0.01636638674
XSIMD EfficientNet 0.10342186480.009636544620 0.0003023025289 0 0.8805802506 0 0 0 0 0.006059037451

XSIMD Yolov3 0.97949794160.001354683172 0 0 0.01899745212 0 0 0 0 0 0.000149923108
XSIMD BERT 0.2093102210.13622706830 0 0 0 0.1147698068 0.060447246980.161895741 0.1766835906 0.14066632532
XSIMD GPT-2 0.25184399140.077725046840 0 0 0 0.019581400780.4582849114 0.036307666010.020168101490.13608888208

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

Bi
Hi

w
e

Bi
Hi

w
e

MemN2N

Bi
Hi

w
e

BERT-B-G BERT-L-S

Bi
Hi

w
e

Bi
Hi

w
e

Bi
Hi

w
e

Ru
nt

im
e

Br
ea

kd
ow

n

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

1.
3x

1.
3x

BERT-B-S BERT-L-G

Baseline

LeOPArd -P

LeOPArd

ALBERT GPT-2-L

ResNet-50

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

0%

20%

40%

60%

80%

100%

XSIMD VGG-16 XSIMD ResNet-50 XSIMD MoileNet XSIMD ResNet-50 GEMM
ResAdd
ReLU
Clip
LeakyReLU
DW-Conv
Transpose
ReduceMean
Softmax
GELU
Other Layers

MobileNet-v2

EfficientNet

Yolov3

BERT
VGG-16

GPT-2

Figure 24. Runtime breakdown of the Tandem
Processor.

Energy Breakdown
Pla$orm Off-chip

Memory
On-chip
Memory

ALU Loop +
Address
Generati

on

Rest of
the

Logic

XSIMD VGG-16 0.35812624840.084370274960.12514092930.40139392730.03096862006

XSIMD ResNet-50 0.37637498370.090677556570.11962892280.38371397280.02960456407

XSIMD MoileNet 0.14871754650.150132690.15738472790.50481704410.03894799143

XSIMD EfficientNet 0.13274869010.16117014630.1584916627 0.5083675763 0.03922192453

XSIMD Yolov3 0.36779298960.091573723080.12135413470.38924765050.03003150217
XSIMD BERT 0.421703820.12299591870.1021997175 0.3278091844 0.02529135942
XSIMD GPT-2 0.35700406260.2169847380.095625300330.3067215104 0.0236643887

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

Bi
Hi

w
e

Bi
Hi

w
e

MemN2N

Bi
Hi

w
e

BERT-B-G BERT-L-S

Bi
Hi

w
e

Bi
Hi

w
e

Bi
Hi

w
e

En
er

gy
 B

re
ak

do
w

n

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)

Baseline

LeOPArd

(pruning only)

LeOPArd

(pruning +

 bit-serial)
1.

3x

1.
3x

BERT-B-S BERT-L-G

Baseline

LeOPArd -P

LeOPArd

ALBERT GPT-2-L

ResNet-50

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

0%

20%

40%

60%

80%

100%

XSIMD VGG-16 XSIMD ResNet-50 XSIMD MoileNet XSIMD EfficientNet

Off-chip Memory
On-Chip Memory
ALU
Loop + Address Calculation
Rest of the Logic

MobileNet-v2

EfficientNet

Yolov3

BERT
VGG-16

GPT-2

Figure 25. Energy breakdown of the
Tandem Processor.

ALU
Lanes 1-8

ALU
Lanes 17-24

ALU
Lanes 9-16

ALU
Lanes 25-32

Interim
BUF1

Interim
BUF2

(a) (b)

Figure 26. (a) Tandem Processor layout and (b) area break-
down in 65nm node.

Designing general-purpose SIMD units, vector ISA exten-
sions, and compilation for them have been largely explored in
academia [104–112] and industry products such as Intel AVX-
512 [113], ARM SVE [114], RISC-V vector extensions [115],
and etc.. Digital Signal Processors (DSPs) [90, 91, 116–120] are
more specialized SIMD units that often come with VLIW ar-
chitectures. QualcommHexagon DSP [91] and MediaBreeze
DSP [90] provide hardware-managed loop executions that
work with their register file/FIFOs. MediaBreeze [90] also
leverages a decoupled access-execute architecture to handle
address generation for streams of data, which are fed into
SIMD ALUs through FIFOs. ARMHelium [120] incorporates
a set of DSP extensions such as low-overhead branch and
scatter-store/gather-load instructions. In contrast, our design
completely departures from register-file-memory semantics.
This fundamental design choice enables Tandem Processor to
eliminate explicit address calculations that are conventionally
carried over registers and replace them with a customized
loop logic. Additionally, the front-end of the pipeline in Tan-
dem Processor handles memory access while in conventional
designs this is normally in the back-end stages. This is also
different from the prior SIMD units with Access-Execute ar-
chitectures (e.g. MediaBreeze) that pass data to the execute
units through FIFOs. In Tandem Processor, Access and Ex-
ecute are part of the same pipeline and there are no FIFOs.
Finally, the combination of not using register files/FIFOs with
the loop logic is a new design feature in Tandem Processor.

10 Conclusion
The increasing prevalence of neural networks and advance-
ments in languagemodels prompt a reevaluation of neural ac-
celerator design. In the last ten years, the research community
has primarily concentrated on GEMM operations while over-
lookingnon-GEMMoperations. This has created amisconcep-
tion that neural networks are solely composedofmatrixmulti-
plications. Furthermore, as deep learning has evolved and en-
tered new domains, the non-GEMM operations have diversi-
fiedandbeen interwoven invarious structural patternswithin
neural networks. As such, to run neural networks end-to-end,
there has been a need to consider non-GEMM layers as a first

class citizen. To address this timely need, this paper proposes
the Tandem Processor that brings forth a novel architecture
along with a compiler and an innovative programmable ISA.
Moreover, this architecture, which is the result of 10 years of
research inbuildingNPUsalso enables adapting to thevolatile
landscapeof deep learning algorithms. TheTandemProcessor
has become the heart of our open-source GeneSys project, a
parametrizable NPU generator with a full-stack, multi-target
compilation stack that goes fromPython to accelerated execu-
tion of LLMs and other DNNs. GeneSys provides comprehen-
sive NPU solutions for applications ranging from high-end
datacenters to ultra-low-power brain-implantable devices
and is publicly available at https://actlab-genesys.github.io/.

Acknowledgments
We thank Hyoukjun Kwon for shepherding our paper. This
work was in part supported by generous gifts from Google,
Samsung, Qualcomm, Microsoft, AMDXilinx as well as the
National Science Foundation (NSF) awards CCF#2107598,
CNS#1822273, Defense Advanced Research Project Agency
(DARPA) under agreement number #HR0011-18-C-0020, Na-
tional Institute of Health (NIH) award #R01EB028350, and
SemiconductorResearchCorporation (SRC) award #2021-AH-
3039. TheU.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes not withstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied of Google, Qual-
comm,Microsoft, Xilinx, Samsung, NSF, SRC, NIH, DARPAor
the U.S. Government. Soroush Ghodrati was partly supported
by a Google PhD Fellowship.

References
[1] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li,

Qi Guo, Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator
for sparse neural networks. InMICRO, 2016.

[2] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. Eie: efficient inference engine on
compressed deep neural network. In ISCA, 2016.

15

https://actlab-genesys.github.io/

[3] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt,
Natalie Enright Jerger, and Andreas Moshovos. Cnvlutin: ineffectual-
neuron-free deep neural network computing. In ISCA, 2016.

[4] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer,
StephenWKeckler, andWilliam J Dally. SCNN: An Accelerator for
Compressed-sparse Convolutional Neural Networks. In ISCA, 2017.

[5] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. Maeri:
Enabling flexible dataflow mapping over dnn accelerators via
reconfigurable interconnects. ASPLOS, 2018.

[6] Vahide Aklaghi, Amir Yazdanbakhsh, Kambiz Samadi, Hadi Es-
maeilzadeh, and Rajesh K. Gupta. Snapea: Predictive early activation
for reducing computation in deep convolutional neural networks. In
ISCA, 2018.

[7] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2:
A flexible accelerator for emerging deep neural networks on mobile
devices. JETCAS, 2019.

[8] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella,
Sudarshan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar
Krishna. Sigma: A sparse and irregular gemm accelerator with
flexible interconnects for dnn training. HPCA, 2020.

[9] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong
Park, Yoonho Song, Jung-Hun Park, Sanghee Lee, Kyoung Park,
JaeW Lee, et al. Aˆ 3: Accelerating attention mechanisms in neural
networks with approximation. InHPCA, 2020.

[10] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse
attention architecture with cascade token and head pruning. In
HPCA, 2021.

[11] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt,
and Andreas Moshovos. Stripes: Bit-serial deep neural network
computing. InMICRO, 2016.

[12] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Vikas Chandra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level
dynamically composable architecture for accelerating deep neural
networks. ISCA, 2018.

[13] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard
O’Leary, Roman Genov, and Andreas Moshovos. Bit-pragmatic deep
neural network computing. InMICRO, 2017.

[14] Sayeh Sharify, Alberto Delmas Lascorz, Kevin Siu, Patrick Judd,
and Andreas Moshovos. Loom: Exploiting weight and activation
precisions to accelerate convolutional neural networks. In DAC, 2018.

[15] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis
Poulos, Mostafa Mahmoud, Sayeh Sharify, Milos Nikolic, Kevin Siu,
andAndreasMoshovos. Bit-tactical:Asoftware/hardwareapproach to
exploiting value and bit sparsity in neural networks. InASPLOS, 2019.

[16] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos
Nikolic, Kevin Siu, Dylan Malone Stuart, Zissis Poulos, and Andreas
Moshovos. Laconic deep learning inference acceleration. In ISCA,
2019.

[17] Sungju Ryu, Hyungjun Kim, Wooseok Yi, and Jae-Joon Kim. Bit-
blade: Area and energy-efficient precision-scalable neural network
accelerator with bitwise summation. InDAC, 2019.

[18] Ali Shafiee, Anirban Nag, NaveenMuralimanohar, Rajeev Balasubra-
monian, John Paul Strachan, Miao Hu, R StanleyWilliams, and Vivek
Srikumar. Isaac: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars. In ISCA, 2016.

[19] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan
Liu, YuWang, and Yuan Xie. Prime: A novel processing-in-memory
architecture for neural network computation in reram-based main
memory. In ISCA, 2016.

[20] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu,
Martin Foltin, R Stanley Williams, Paolo Faraboschi, Wen-mei W
Hwu, John Paul Strachan, Kaushik Roy, et al. Puma: A programmable

ultra-efficient memristor-based accelerator for machine learning
inference. InASPLOS, 2019.

[21] Geng Yuan, Payman Behnam, Zhengang Li, Ali Shafiee, Sheng Lin,
Xiaolong Ma, Hang Liu, Xuehai Qian, Mahdi Nazm Bojnordi, Yanzhi
Wang, et al. Forms: fine-grained polarized reram-based in-situ
computation for mixed-signal dnn accelerator. In ISCA, 2021.

[22] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin
Zhong. Redeye: analog convnet image sensor architecture for
continuous mobile vision. In ISCA, 2016.

[23] Prakalp Srivastava, Mingu Kang, Sujan K Gonugondla, Sungmin Lim,
Jungwook Choi, Vikram Adve, Nam Sung Kim, and Naresh Shanbhag.
Promise: An end-to-end design of a programmable mixed-signal
accelerator for machine-learning algorithms. In ISCA, 2018.

[24] Soroush Ghodrati, Hardik Sharma, Sean Kinzer, Amir Yazdanbakhsh,
Jongse Park, Nam Sung Kim, Doug Burger, and Hadi Esmaeilzadeh.
Mixed-signal charge-domain acceleration of deep neural networks
through interleaved bit-partitioned arithmetic. In PACT, 2020.

[25] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and
Saibal Mukhopadhyay. Neurocube: A programmable digital neuro-
morphic architecture with high-density 3d memory. In ISCA, 2016.

[26] Charles Eckert, XiaoweiWang, JingchengWang, Arun Subramaniyan,
Ravi Iyer, Dennis Sylvester, David Blaaauw, and Reetuparna Das.
Neural cache: Bit-serial in-cache acceleration of deep neural networks.
In ISCA, 2018.

[27] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing.
Floatpim: In-memory acceleration of deep neural network training
with high precision. In ISCA, 2019.

[28] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos
Kozyrakis. Tetris: Scalable and efficient neural network acceleration
with 3d memory. InASPLOS, 2017.

[29] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, JiaWang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A
machine-learning supercomputer. InMICRO, 2014.

[30] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial
architecture for energy-efficient dataflow for convolutional neural
networks. In ISCA, 2016.

[31] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kim, Chenkai Shao, Asit Misra, and Hadi Esmaeilzadeh. From
high-level deep neural models to fpgas. InMICRO, 2016.

[32] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and
Xiaowei Li. Flexflow: A flexible dataflow accelerator architecture for
convolutional neural networks. InHPCA, 2017.

[33] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA, 2017.

[34] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael
Pellauer, andChristopherWFletcher. Ucnn: Exploiting computational
reuse in deep neural networks via weight repetition. arXiv, 2018.

[35] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd
Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Logan Adams, Mahdi Ghandi, et al. A configurable cloud-scale dnn
processor for real-time ai. In ISCA, 2018.

[36] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos
Kozyrakis. Tangram: Optimized coarse-grained dataflow for scalable
nn accelerators. InASPLOS, 2019.

[37] Kartik Hegde, Rohit Agrawal, Yulun Yao, and ChristopherW Fletcher.
Morph: Flexible acceleration for 3d cnn-based video understanding.
InMICRO, 2018.

[38] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian
Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, et al. Simba: Scaling deep-
learning inference with multi-chip-module-based architecture. In
MICRO, 2019.

16

[39] HT Kung, Bradley McDanel, and Sai Qian Zhang. Packing sparse
convolutional neural networks for efficient systolic array implementa-
tions: Column combining under joint optimization. In ASPLOS, 2019.

[40] Caiwen Ding, Siyu Liao, YanzhiWang, Zhe Li, Ning Liu, Youwei Zhuo,
Chao Wang, Xuehai Qian, Yu Bai, Geng Yuan, et al. Circnn: accel-
erating and compressing deep neural networks using block-circulant
weight matrices. InMICRO, 2017.

[41] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Neural acceleration for general-purpose approximate programs. In
MICRO, 2012.

[42] Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst.
DVAFS: Trading Computational Accuracy for Energy Through
Dynamic-Voltage-Accuracy-Frequency-Scaling. InDATE, 2017.

[43] Daniel Bankman, Lita Yang, Bert Moons, Marian Verhelst, and Boris
Murmann. An always-on 3.8 𝜇j/86% cifar-10 mixed-signal binary cnn
processor with all memory on chip in 28nm cmos. In ISSCC, 2018.

[44] Mingcong Song, Jiechen Zhao, Yang Hu, Jiaqi Zhang, and Tao Li.
Prediction based execution on deep neural networks. In ISCA, 2018.

[45] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks. In FPGA, 2015.

[46] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. Energy-Efficient
Neural Network Accelerator Based on Outlier-Aware Low-Precision
Computation. In ISCA, 2018.

[47] Mostafa Mahmoud, Kevin Siu, and Andreas Moshovos. Diffy: A déjà
vu-free differential deep neural network accelerator. InMICRO, 2018.

[48] Jiaqi Zhang, Xiangru Chen, Mingcong Song, and Tao Li. Eager
Pruning: Algorithm and Architecture Support for Fast Training of
Deep Neural Networks. In ISCA, 2019.

[49] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer,
Brahmendra Reddy Yatham, Navateja Alla, Hardik Sharma, Moham-
mad Alian, Eiman Ebrahimi, Nam Sung Kim, Cliff Young, and Hadi
Esmaeilzadeh. Planaria: Dynamic Architecture Fission for Spatial
Multi-Tenant Acceleration of Deep Neural Networks. InMICRO, 2020.

[50] RohanMahapatra, Soroush Ghodrati, Byung Hoon Ahn, Sean Kinzer,
Shu tingWang, Hanyang Xu, Lavanya Karthikeyan, Hardik Sharma,
Amir Yazdanbakhsh, Mohammad Alian, and Hadi Esmaeilzadeh.
In-storage domain-specific acceleration for serverless computing.
ASPLOS, 2024.

[51] Zheng Li, Soroush Ghodrati, Amir Yazdanbakhsh, Hadi Esmaeilzadeh,
and Mingu Kang. Accelerating Attention through Gradient-Based
Learned Runtime Pruning. In ISCA, 2022.

[52] Soroush Ghodrati, Hardik Sharma, Cliff Young, Nam Sung Kim, and
Hadi Esmaeilzadeh. Bit-parallel vector composability for neural
acceleration. InDAC, 2020.

[53] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A
pipelined reram-based accelerator for deep learning. InHPCA, 2017.

[54] Ananda Samajdar, Yuhao Zhu, PaulWhatmough, MatthewMattina,
and Tushar Krishna. Scale-sim: Systolic cnn accelerator simulator.
arXiv, 2018.

[55] OpenAI. Chatgpt. https://chat.openai.com, 2023.
[56] Google. Bard: A conversational ai tool by google. https:

//bard.google.com, 2023.
[57] Adobe. Your imagination’s new best friend. https:

//www.adobe.com/products/firefly.html, 2023.
[58] Microsoft. Github copilot: Your ai pair programmer.

https://github.com/features/copilot, 2023.
[59] Designs.ai. Ai-powered text-to-video - turn text into stunning videos.

https://designs.ai/, 2023.
[60] Meta. Introducing audiocraft: A generative ai tool for audio and

music. https://about.fb.com/news/2023/08/audiocraft-generative-
ai-for-music-and-audio/, 2023.

[61] Microsoft. Reinventing search with a new ai-powered microsoft bing
and edge, your copilot for the web. https://blogs.microsoft.com/blog/

2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-
bing-and-edge-your-copilot-for-the-web/, 2023.

[62] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv, 2014.

[63] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv, 2018.

[64] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language Models are Unsupervised Multitask
Learners. OpenAI blog, 2019.

[65] Nvdla. http://nvdla.org/index.html.
[66] Dingqing Yang, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub,

GuyLemieux, andMieszkoLis. Procrustes: aDataflowandAccelerator
for Sparse Deep Neural Network Training. InMICRO, 2020.

[67] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru
Zhang. Matraptor: A sparse-sparse matrix multiplication accelerator
based on row-wise product. InMICRO, 2020.

[68] NVIDIA. Nvidia turing architecture in-depth. https://developer.
nvidia.com/blog/nvidia-turing-architecture-in-depth/, 2022.

[69] Norman P Jouppi, DoeHyun Yoon,MatthewAshcraft, MarkGottscho,
Thomas B Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma,
XiaoyuMa, et al. Ten lessons from three generations shaped google’s
tpuv4i: Industrial product. In ISCA, 2021.

[70] Tesla. Dojo chip. https://www.tesla.com/AI, 2022.
[71] Swagath Venkataramani, Vijayalakshmi Srinivasan, Wei Wang,

Sanchari Sen, Jintao Zhang, AnkurAgrawal,MonodeepKar, Shubham
Jain, Alberto Mannari, Hoang Tran, et al. RaPiD: AI Accelerator for
Ultra-low Precision Training and Inference. In ISCA, 2021.

[72] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer,
Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard
Mao, et al. Gemmini: Enabling systematic deep-learning architecture
evaluation via full-stack integration. InDAC, 2021.

[73] HEkin Sumbul, Tony FWu, Yuecheng Li, Syed Shakib Sarwar,William
Koven, Eli Murphy-Trotzky, Xingxing Cai, Elnaz Ansari, Daniel H
Morris, Huichu Liu, et al. System-Level Design and Integration of a
Prototype AR/VR Hardware Featuring a Custom Low-Power DNN
Accelerator Chip in 7nmTechnology for CodecAvatars. InCICC, 2022.

[74] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[75] JosephRedmonandAli Farhadi. Yolov3:An incremental improvement.
arXiv, 2018.

[76] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018.

[77] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. ICML, 2019.

[78] Facebook Research Microsoft. Onnx: an open format to represent
deep learning models. http://onnx.ai/, 2017.

[79] Samuel Williams, AndrewWaterman, and David Patterson. Roofline:
an insightful visual performance model for multicore architectures.
Communications of the ACM, 52(4):65–76, 2009.

[80] Rui Xu, ShengMa, YaohuaWang, YangGuo, Dongsheng Li, and Yuran
Qiao. Heterogeneous Systolic Array Architecture for Compact CNNs
Hardware Accelerators. IEEE Transactions on Parallel and Distributed
Systems, 2021.

[81] M.Abadi et al. TensorFlow:A system for large-scalemachine learning.
OSDI, 2016.

[82] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, LeyuanWang, Yuwei Hu, Luis
Ceze, et al. TVM: An Automated End-to-End Optimizing Compiler
for Deep Learning. InOSDI, 2018.

[83] A. Paszke et al. PyTorch: An imperative style, high-performance deep
learning library. NeurIPS, 2019.

17

https://chat.openai.com
https://bard.google.com
https://bard.google.com
https://www.adobe.com/products/firefly.html
https://www.adobe.com/products/firefly.html
https://github.com/features/copilot
https://designs.ai/
https://about.fb.com/news/2023/08/audiocraft-generative-ai-for-music-and-audio/
https://about.fb.com/news/2023/08/audiocraft-generative-ai-for-music-and-audio/
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
http://nvdla.org/index.html
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://www.tesla.com/AI
http://onnx.ai/

[84] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin
Ren. Dnnfusion: accelerating deep neural networks execution with
advanced operator fusion. In PLDI, 2021.

[85] William Lacy, Gregory Michael Thorson, Christopher Aaron Clark,
Norman Paul Jouppi, Thomas Norrie, and Andrew Everett Phelps.
Vector Processing Unit. U.S Patent 11520581, 2022.

[86] SiFIve. Introduction to the sifive intelligence x280. https://www.sifive.
com/blog/introduction-to-the-sifive-intelligence-x280, 2022.

[87] Amin Firoozshahian, Joel Coburn, Roman Levenstein, Rakesh Nattoji,
Ashwin Kamath, Olivia Wu, Gurdeepak Grewal, Harish Aepala,
Bhasker Jakka, Bob Dreyer, et al. Mtia: First generation silicon target-
ingmeta’s recommendation systems. In Proceedings of the 50thAnnual
International Symposium on Computer Architecture, pages 1–13, 2023.

[88] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago,
Kartik Hegde, Rangharajan Venkatesan, StephenWKeckler, Christo-
pherW Fletcher, and Joel Emer. Buffets: An efficient and composable
storage idiom for explicit decoupled data orchestration. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 137–151,
2019.

[89] Amir Yazdanbakhsh, Hajar Falahati, Philip J. Wolfe, Kambiz Samadi,
Hadi Esmaeilzadeh, and Nam Sung Kim. GANAX: A Unified
SIMD-MIMDAcceleration for Generative Adversarial Network. In
ISCA, 2018.

[90] Deependra Talla, Lizy Kurian John, and Doug Burger. Bottlenecks in
multimediaprocessingwithsimdstyleextensionsandarchitectural en-
hancements. IEEE Transactions on Computers, 52(8):1015–1031, 2003.

[91] Lucian Codrescu, Willie Anderson, Suresh Venkumanhanti, Mao
Zeng, Erich Plondke, Chris Koob, Ajay Ingle, Charles Tabony, and
Rick Maule. Hexagon dsp: An architecture optimized for mobile
multimedia and communications. IEEE Micro, 34(2):34–43, 2014. doi:
10.1109/MM.2014.12.

[92] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael WMahoney, and
Kurt Keutzer. I-bert: Integer-only bert quantization. In ICML, 2021.

[93] gemmlowp: a small self-contained low-precision gemm library, 2022.
https://github.com/google/gemmlowp.

[94] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2704–2713, 2018.

[95] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu,
Eric Tan, LeyuanWang, Qijing Huang, YidaWang, Michael Mahoney,
et al. Hawq-v3: Dyadic neural network quantization. In International
Conference on Machine Learning, pages 11875–11886. PMLR, 2021.

[96] Andrew W. Appel. Modern Compiler Implementation in ML: Basic
Techniques. Cambridge University Press, 1997.

[97] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-JeanWu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, et al. Mlperf inference
benchmark. arxiv, 2019.

[98] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-P:
Architecture-level Modeling for SRAM-based Structures with
Advanced Leakage Reduction Techniques. In ICCAD, 2011.

[99] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, PaulWhatmough,
MatthewMattina, and Tushar Krishna. A systematic methodology
for characterizing scalability of dnn accelerators using scale-sim. In
ISPASS, 2020.

[100] ONNX Runtime developers. ONNX Runtime, 11 2018. URL
https://github.com/microsoft/onnxruntime.

[101] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end of
multicore scaling. In ISCA, 2011.

[102] Noah Beck, Sean White, Milam Paraschou, and Samuel Naffziger.
‘zeppelin’: An soc for multichip architectures. In ISSCC, 2018.

[103] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, et al. Firesim: Fpga-accelerated cycle-exact
scale-out system simulation in the public cloud. In ISCA, 2018.

[104] ThomasWillhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner,
Alexander Zeier, and Jan Schaffner. Simd-scan: ultra fast in-memory
table scan using on-chip vector processing units. Proceedings of the
VLDB Endowment, 2(1):385–394, 2009.

[105] Basil Sh. Mahmood andMamoon A. Al Jbaar. Design and implemen-
tation of simd vector processor on fpga. In International Symposium
on Innovations in Information and Communications Technology, pages
124–130, 2011. doi: 10.1109/ISIICT.2011.6149607.

[106] A. Danysh and D. Tan. Architecture and implementation of
a vector/simd multiply-accumulate unit. IEEE Transactions on
Computers, 54(3):284–293, 2005. doi: 10.1109/TC.2005.41.

[107] Moritz Kreutzer, Georg Hager, GerhardWellein, Holger Fehske, and
Alan R Bishop. A unified sparse matrix data format for efficient
general sparse matrix-vector multiplication on modern processors
with wide simd units. SIAM Journal on Scientific Computing, 36(5):
C401–C423, 2014.

[108] Alexandre EEichenberger, PengWu, andKevinO’brien. Vectorization
for simd architectures with alignment constraints. Acm sigplan
notices, 39(6):82–93, 2004.

[109] Franz Franchetti, Stefan Kral, Juergen Lorenz, and Christoph W
Ueberhuber. Efficient utilization of simd extensions. Proceedings of
the IEEE, 93(2):409–425, 2005.

[110] Gaurav Mitra, Beau Johnston, Alistair P Rendell, Eric McCreath, and
Jun Zhou. Use of simd vector operations to accelerate application
code performance on low-powered arm and intel platforms. In 2013
IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum, pages 1107–1116. IEEE, 2013.

[111] Amir Morad, Leonid Yavits, and Ran Ginosar. Gp-simd processing-
in-memory. ACM Transactions on Architecture and Code Optimization
(TACO), 11(4):1–26, 2015.

[112] J. Wawrzynek, K. Asanovic, B. Kingsbury, D. Johnson, J. Beck, and
N. Morgan. Spert-ii: a vector microprocessor system. Computer, 29
(3):79–86, 1996. doi: 10.1109/2.485896.

[113] Intel advanced vector extensions (avx). https://www.intel.com/
content/www/us/en/architecture-and-technology/avx-512-
overview.html.

[114] Arm scalable vector extension (sve). https://developer.arm.com/
documentation/102476/0100.

[115] Risc-v vector extensions. https://github.com/riscv/riscv-v-
spec/blob/master/v-spec.adoc.

[116] JeffHDerby and JaimeHMoreno. A high-performance embedded dsp
corewith novel simd features. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03).,
volume 2, pages II–301. IEEE, 2003.

[117] Masaki Toyokura, Hisahi Kodama, Eiji Miyagoshi, Koyoshi Okamoto,
Masahiro Gion, Takayuki Minemaru, A Ohtani, T Araki, H Takeno,
T Akiyama, et al. A video dsp with a macroblock-level-pipeline and a
simd type vector-pipeline architecture for mpeg2 codec. IEEE journal
of solid-state circuits, 29(12):1474–1481, 1994.

[118] Huy Nguyen and Lizy Kurian John. Exploiting simd parallelism
in dsp and multimedia algorithms using the altivec technology. In
Proceedings of the 13th international conference on Supercomputing,
pages 11–20, 1999.

[119] E Matus, Hendrik Seidel, Torsten Limberg, Pablo Robelly, and G Fet-
tweis. Agflops vector-dsp for broadbandwireless applications. In IEEE
Custom Integrated Circuits Conference 2006, pages 543–546. IEEE, 2006.

[120] Joseph Yiu. Blending dsp and ml features into a low-power
general-purpose processor – how far can we go? White Paper, 2020.

18

https://www.sifive.com/blog/introduction-to-the-sifive-intelligence-x280
https://www.sifive.com/blog/introduction-to-the-sifive-intelligence-x280
https://github.com/google/gemmlowp
https://github.com/microsoft/onnxruntime
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://developer.arm.com/documentation/102476/0100
https://developer.arm.com/documentation/102476/0100
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc

	Abstract
	1 Introduction
	2 A Deep Dive into Non-GEMM Operations
	2.1 Characteristics of Non-GEMM Operations
	2.2 Requirements for Executing Non-GEMM Operations
	2.3 Existing Approaches for Executing Non-GEMM Layers
	2.4 Our Approach

	3 Design Considerations for the Tandem Processor
	3.1 Memory Subsystem Design
	3.2 Specialized On-Chip Data Access Mechanism
	3.3 Specialized Loop Execution
	3.4 Arithmetic Logic Units Design
	3.5 Integration with the GEMM Unit

	4 Microarchitecture Design for the Tandem Processor
	4.1 Pipeline Design
	4.2 Overall Execution Flow and the GEMM-Unit-Tandem-Processor Synchronization Logic

	5 ISA Design for the Tandem Processor
	6 Compilation for the Tandem Processor
	7 Evaluation Methodology
	8 Experimental Results
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

